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0. Introduction

The polylogarithm functions (for short “polylogarithms”), defined by the power series

Lim(z) =
∑

n≥1

zn

nm
, |z| < 1, (1)

were long considered to be “just another class” of special functions with some interesting
properties but they lived rather a life of mathematical outlaws. They were investigated,
though, by several prominent mathematicians (Leibniz, Abel, Kummer), mainly in the
19th century.

Since the last 15 years, they have begun to conquer much mathematical ground by
providing connections between formerly unrelated fields of mathematical research, often
due to their strange “internal structure” which is encoded in the functional equations they
satisfy.

One of the first unexpected occurrences was encountered by S. Bloch in his funda-
mental paper [Bl] where he introduced a certain abelian group B(F ) which should give a
constructive description of a group coming from the algebraic K-theory of a number field
F . Algebraic K-theory gives a sequence of important invariants for a field (in fact, for
any ring) F , which are defined non-constructively and which are very difficult to compute.
Bloch showed that the dilogarithm function Li2 (or rather some modification of it) is a
map on this explicitly given group B(F ). Suslin [Su] later proved that Bloch’s map con-
necting the two groups is in fact a quasiisomorphism. As a consequence one can interpret
the functional equations fulfilled by the dilogarithm as reflecting the arithmetic of this
K-group.

The analogous picture for each m-logarithm Lim(z) of order m > 2 (i.e. a construc-
tively given candidate Bm(F ) for some higher K-group on which the—suitably modified—
m-logarithm is defined) was established by Zagier [Z1], and one expects that every func-
tional equation fulfilled by some polylogarithm mirrors some structure of the corresponding
higher K-group.

A proof of the corresponding result in the case m = 3, namely that Zagier’s candidate
B3(F ) is quasiisomorphic to a certain K-group, was given by Goncharov [G1], [G2].

1. Properties of polylogarithms

In this paragraph we want to give some of the properties of the (classical) polyloga-
rithms, beginning with the dilogarithm Li2(z) as defined above.

1-1. The dilogarithm

The dilogarithm Li2(z) as defined in (1) can be analytically continued to the cut
complex plane via the integral representation

Li2(z) = −

∫ z

0

log(1 − t)

t
dt, z ∈ C − [1,∞),
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and one can think of it as a multivalued function on C× − {1} or rather as a function on
the universal cover of C× − {1}.

There are only a few special values known explicitly, we give a typical non-trivial

Example: Li2(
√

5−1
2

) = π2

10
− log2(

√
5+1
2

),

there are also several very special combinations of dilogarithm values called ladders involv-
ing only the powers of some algebraic number α.

Example: For α = −2 cos 4π
9 we have Li2(α

3)−3Li2(α
2)−3Li2(α) = π2

18

(

= 1
3Li2(α

0)
)

.

On the other hand there are lots of functional equations—so-called “trivial” ones:
the “inversion relation”

Li2(z) + Li2

(

1

z

)

= −
π2

6
−

1

2
log2(−z), z ∈ C − [0,∞),

and the “distribution relation”

Li2(z
n) = n

∑

ζn=1

Li2(ζz), |z| < 1,

but also “non-trivial” ones like

Li2(z) + Li2(1 − z) =
π2

6
− log(z) log(1 − z), z ∈ C− [1,∞)− (∞, 0],

the most important (because in a way basic) one being the “five term relation” discovered
by Spence, Abel and others (we give only one of many possible forms):

Li2

(

x

1 − x

y

1 − y

)

−Li2

(

y

1 − x

)

−Li2

(

x

1 − y

)

+Li2(x)+Li2(y) = − log(1−x) log(1−y),

|x| + |y| < 1.

This functional equation is also true (after appropriate substitutions of the arguments
like in the inversion relation which involve new logarithmic terms and constants) on the
other regions in C. It is known to give all functional equations where the arguments are
rational functions of independent parameters (Wojtkowiak).

1-2. The “higher” polylogarithms

The polylogarithms Lim(z) of higher order m > 2 defined in (1) share many properties
with the dilogarithm:

– they can be analytically continued to the cut complex plane via

Lim(z) =

∫ z

0

Lim−1(t)

t
dt, z ∈ C − [1,∞). (2)

– there are very few special values explicitly known (for small m),
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– there are several ladders for certain algebraic numbers known (for small m),
– there are “trivial” functional equations for all m (i.e. an inversion relation and distri-

bution relations which are very similar to the ones for m = 2), and
– there are “non-trivial” functional equations known for m ≤ 7, (and expected to exist

for all m). We have the following “high score table”:
m = 3 : Spence (1809), Kummer (1840), Goncharov (1990), Wojtkowiak (1990),
m = 4, 5 : Kummer (1840), Wechsung (1965), Lewin (1986),
m = 6, 7 : the author (1990/91).

Here we have included Goncharov because his functional equation is in a way as basic
as the five term relation for the dilogarithm, Wojtkowiak because his equation is of a
general type, Wechsung since he generalized Kummer’s approach (and was able to find
new ones) and Lewin for his skillful use of ladders to produce new equations.

By differentiating functional equations of polylogarithms of higher order m one au-
tomatically gets functional equations for polylogarithms of order k < m (cf. (2)), but in
our computer search we also found new equations for orders 2 ≤ m ≤ 6 which are not
derivable from the higher-order ones known so far.

For more details on properties of these “classical” polylogarithms cf. [L1],[L2].

2. One-valued versions of polylogarithms

2.1 The Bloch-Wigner dilogarithm

There is a variant of the dilogarithm function called the Bloch-Wigner dilogarithm
which has several useful properties, namely
(i) it is one-valued and defined on the projective line P 1(C),
(ii) it is continuous on P 1(C) and real-analytic on P 1(C) − {0, 1,∞},
(iii) it satisfies functional equations without “lower order terms” like products of logarithms

and π.

The Bloch-Wigner dilogarithm is defined as

D(z) = D2(z) = Im
(

Li2(z) + log |z| log(1 − z)
)

, z ∈ C − {0, 1},

and D(0) = D(1) = D(∞) = 0. (Im denotes the imaginary part.)

The five term relation for D(z) reads

D

(

x

1 − x

y

1 − y

)

−D

(

y

1 − x

)

−D

(

x

1 − y

)

+D(x) +D(y) = 0,

x, y ∈ P 1(C), (x, y) 6∈ {(0, 1), (1, 0)}.

D is (up to a constant factor) the only measurable function on C which fulfills this
five term relation and is therefore characterized by it (cf. [Bl]).

This function D first appeared in work of D. Wigner on the cohomology of GL(2,C)
and was then encountered by S. Bloch in his attempt to make the so-called Borel regulator
map explicit (cf. sec. 3).
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2.2 The Bloch-Wigner-Ramakrishnan-Zagier-Wojtkowiak polylogarithm

There are also one-valued variants Pm of each m-logarithm function; their name
“Bloch-Wigner-Ramakrishnan-Zagier-Wojtkowiak polylogarithm” stems from the fact that
Ramakrishnan first defined a higher analog of the Bloch-Wigner dilogarithm implicitly (i.e.
without giving actual formulae) and then Zagier and Wojtkowiak independently found an
explicit form. Zagier actually gave two different versions which can be used interchange-
ably in our context (they agree as functions on a certain group on which we only want to
consider them). One of them is defined as follows:

Pm(z) = Re
Im

(m−1
∑

k=0

2kBk
k!

logk |z| Lim−k(z)

)

, Re if m odd,
Im if m even,

|z| ≤ 1, z ∈ C.

Here Bk denotes the k-th Bernoulli number (B0 = 1, B1 = −1
2 , B2 = 1

6 , . . .) and Re the
real part.
For |z| > 1 define it as Pm(z) = (−1)m−1Pm( 1

z
).

These functions Pm for m > 2 have the same properties (i),(ii) and (iii) as listed
for the Bloch-Wigner dilogarithm, the “lower order terms” in (iii) being products of loga-
rithms, constants and Lik(z) for k < m. For more details cf. [Z1].

3. The polylogarithms in algebraic number theory

In this section we want to give—as an “application”—a rough picture of the context in
which the functional equations of polylogarithms appear in a crucial way (it is not needed
in the next section apart from the definition for Λ2(A) and the notation for elements in
this group).

Algebraic K-theory gives a sequence of abelian groups Kn(F ) for each n ≥ 0 and each
ring F . These groups are defined in a highly inconstructive way (cf. [Q]) but in some cases
one has a certain “explicit” amount of information about them.

For number fields F one knows about the rank of these groups by the work of Borel
[Bo], namely: let r1 be the number of real places and r2 the number of complex places up
to conjugacy, i.e. [F : Q] = r1 + 2r2, put r+ := r1 + r2 and r− := r2, then

rank(Kn(F )) =







0, if n is even
r+, if n ≡ 1 (mod 4)
r−, if n ≡ 3 (mod 4).

Borel constructed a “regulator map” regm from K2m−1(F ) to Rr± (the definition of
which we don’t want to give here, cf. [Bo]) and showed that the image of this map is a
lattice with covolume q · ζF (m) ·

√

|DF |/π
mr∓ for some q ∈ Q. (Here DF denotes the

discriminant of F .)
Bloch tried to make this Borel regulator map explicit by defining (in a uniform way for

all number fields) a certain abelian group B(F ) which he expected to capture the structure
of the algebraic K-group K3(F ), namely:
Define for an abelian group A the “second exterior power” as the quotient

Λ2(A) = A⊗A/ 〈a⊗ b+ b⊗ a | a, b ∈ A〉, (2)
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and write a ∧ b for the image of a⊗ b in Λ2(A).
Then define the following subgroup of Z[P 1(F )] (=the free abelian group on P 1(F ) )
reflecting the five term relation (and its “degenerations”) for the dilogarithm: for x ∈ F
we write [x] for the corresponding generator in Z[P 1(F )] ,

R(F ) =

{

[x]+[y]−

[

x

1 − y

]

−

[

y

1 − x

]

+

[

x

1 − x

y

1 − y

]

, [x]+

[

1

x

]

, [x]+[1 − x], [0], [1], [∞]

∣

∣

∣

∣

x, y ∈ P 1(F ), (x, y) 6∈ {(0, 1), (1, 0)}

}

.

The Bloch group for a number field F and also for F = Q and F = C is given by

B(F ) =
{
∑

i ni[xi] ∈ Z[P 1(F )] |
∑

i ni
(

xi ∧ (1 − xi)
)

= 0 mod torsion ∈ Λ2(F×)}

R(F )

One immediately computes that R(F ) is in fact a subgroup of the group given in
the “numerator ” of the definition for B(F ). Moreover, extending the (Bloch-Wigner)
dilogarithm linearly to a function on Z[P 1(F )] and using the fact that it fulfills the five
term relation (and its “degenerations”) and it is clear that the (Bloch-Wigner) dilogarithm
can be regarded as a function on the quotient group B(F ).

The complex embeddings σ : F →֒ C induce maps B(F ) →֒ B(C) , and by
composition with the above we get a map

B(F ) →֒ ⊕r2i=1B(C)
(D,...,D)
−→ Rr2 .

Theorem (Suslin [Su]+Bloch [Bl]):
There is an isomorphism ψ (up to tensoring with Q) between K3(F ) and B(F ) for all
number fields F which makes the following diagram commute:

K3(F )
ψ

−→ B(F )

↓reg2 ↓(D, ..., D)

Rr2 = Rr2 .

As a corollary (combining the results of Borel, Bloch and Suslin), one has the following

“Rigidity” fact:

For each number field F one can express ζF (2) (up to a known factor) as a determinant
with entries

∑

niD(xi) where xi ∈ F and ni ∈ Q.

A slightly weaker statement had been proved earlier by Zagier [Z2].

Essentially the same picture has been established (conjecturally) by Zagier [Z1] for
K2m−1(F ), regm, Pm and the following generalized Bloch group Bm(F ). The idea is to take
again the free abelian group on P 1(F ), to impose some suitable algebraic condition which
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should be fulfilled by functional equations for the m-logarithm and to divide by “the sub-
group generated by specializing the functional equations defined over F (or, alternatively,
over Q) for the m-logarithm to arguments in F .”

More precisely, we set

R2(F ) = R(F ), B2(F ) = B(F ),

and for m > 2 define the following map

δFm : Z[P 1(F )] −→ Bm−1(F ) ⊗ F×

[x] 7−→ [x]m−1 ⊗ x

and δFm([0]) = δFm([1]) = δFm([∞]) = 0, where [x]m−1 is the projection of [x] onto
Bm−1(F ).

We write F (t) for the function field over F in one variable, for which we can define

δ
F (t)
m in the same way.

Each element t0 ∈ F defines a “specialization map”

Z[P 1(F (t))] −→ Z[P 1(F )]

ξ(t) =
∑

ni[xi(t)] 7−→ ξ(t0) =
∑

ni[xi(t0)]

Now define
Rm(F ) = {ξ(0)− ξ(1) | ξ(t) ∈ ker

(

δF (t)
m

)

}

and finally
Bm(F ) = ker(δFm)/Rm(F ).

With these notations, we can state a version of

Zagier’s conjecture:

There is a quasiisomorphism ψ making the following diagram commute

K2m−1(F )
ψ

−→ Bm(F )

↓regm ↓(Pm, ..., Pm)

Rr∓ = Rr∓ .

As a corollary, one would have:

Rigidity (conjecture for m > 3):
For each number field F one can express ζF (m) (up to a known factor) as a determinant
with entries

∑

niPm(xi) where xi ∈ F and ni ∈ Q.

Goncharov [G1] has proved Zagier’s conjecture in the case m = 3 and has also given
an approach for handling the general case. Beilinson and Deligne ([B-D]) have given a
map Bm(F ) −→ K2m−1(F ) such that the (mirrored) diagram above commutes.
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4. An algebraic criterion for functional equations

We have seen that it is desirable to find functional equations for higher polylogarithms,
and we now state a criterion for their existence which was used to actually find new ones
(using a computer).

Recall the definition of Λ2(A) for an abelian group A (sec. 3, (2)) and the notation
a ∧ b for the image of a⊗ b under the natural projection A⊗ A −→ Λ2(A) .

Let βm : Z[C(t)×] −→ Symm−2(C(t)×) ⊗ Λ2(C(t)×) be the homomorphism given on
generators by

βm([x]) = [x]m−2 ⊗ x ∧ (1 − x),

where [x]k denotes the image of x⊗k under the natural map
⊗k

j=1 C(t)× −→ Symk(C(t)×)
(i.e. sum over the action of the symmetric group Σk which permutes the factors in the
tensor product).
Let Pm be extended linearly to a map on Z[C(t)×] . Then we have the following

Criterion (Zagier [Z1]): For ξ(t) ∈ Z[C(t)×] the following holds:

βm(ξ(t)) = 0 =⇒ Pm(ξ(t)) = constant.

Thus in order to find functional equations it is sufficient to take a (finite) set {xi(t)} ⊂
C(t)× , determine a basis of a finite dimensional subspace of the vector space
(

Symm−2(C(t)×) ⊗ Λ2(C(t)×)
)

⊗ Q (in order to use vector space argumentation we ten-
sor with Q), namely a subspace in which all the βm([xi(t)]) lie, and then look for linear
dependencies among these images.

Example 1. m = 3,

2β3

(

[t] +
[ 1

1 − t

]

+
[

1 −
1

t

])

= 0 in C(t)× ⊗ Λ2(C(t)×).

(Keep in mind that we write the “group addition” multiplicatively, so since 1 ∈ C(t)× is
the neutral element we have e.g. 2

(

y ⊗ z ∧ (−1)
)

= y ⊗ z ∧ (−1)2 = 0.) Indeed, if we
put for simplicity u = 1 − t und e = −1 .

2 β3

(

[t] +
[ 1

1 − t

]

+
[

1 −
1

t

]

)

= 2

(

(

t⊗ t ∧ u
)

+
(

u−1 ⊗ u−1 ∧ e · t · u−1
)

+
(

e · u · t−1 ⊗ e · u · t−1 ∧ t−1
)

)

= 2

(

(

t⊗ t ∧ u
)

+
(

u⊗ u ∧ e + u⊗ u ∧ t − u⊗ u ∧ u
)
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+
(

− e⊗ e ∧ t − e⊗ u ∧ t + e⊗ t ∧ t

− u⊗ e ∧ t − u⊗ u ∧ t + u⊗ t ∧ t

+ t⊗ e ∧ t + t⊗ u ∧ t − t⊗ t ∧ t
)

)

= 0.

Example 2. m = 4. Let

ξ(t) = 2([t(1 − t)] +[− t
(1−t)2 ]+[−1−t

t2
])

−3([ 1
1−t+t2 ] +[ (1−t)2

1−t+t2 ] +[ t2

1−t+t2 ])

−6([−1−t+t2
t(1−t) ]+[ 1−t+t

2

t
] +[ 1−t+t

2

1−t ]).

Then 2β4(ξ(t)) = 0 in Sym2(C(t)×) ⊗ Λ2(C(t)×).

The verification is left to the reader.
There is a more conceptual way to prove that such a linear combination (as in Example
2) among the β4([xi(t)]) must hold: on the submodule

V = 〈±ta(1 − t)b(1 − t+ t2)c | a, b, c ∈ Z〉 ⊂ C(t)×

we have an Σ3-action induced by the Σ3-action on C(t)× generated by (t 7−→ 1
t
) and

(t 7−→ 1 − t).
All the 9 arguments xi(t) in ξ(t) given above have the property that 1−xi(t) also lies

in V and the arguments in each row form a full orbit under the Σ3-action.
Viewing

(

Sym2(V ) ⊗ Λ2(V )
)

⊗ Q as a representation space for Σ3 we can show via a
dimension argument (namely the subspace of Σ3-invariants has dimension 2) that the
β4-images of the three formal sums over the Σ3-orbits must satisfy a linear dependence
relation—and in fact it is (essentially) unique, given by the above.

Using Zagier’s criterion, we obtain a functional equation for the 4-logarithm, and one
easily finds that the constant (occurring in the formulation of the criterion) must be zero
in this case.

In many of the functional equations that we’ve found there is some non-trivial sym-
metry group acting on the set of arguments, and in several cases the use of linear repre-
sentation theory of these finite groups is actually sufficient to prove that a (non-trivial)
functional equation must hold (regardless of coefficient considerations)—given that one
has found enough xi(t) such that all the βm([xi(t)]) lie in a “low”-dimensional subvector
space. In general, though, it is not sufficient.

For further examples cf. also [Z3] and [L2] (Ch. 16.4).

The functional equations for higher m-logarithms are of a rather complex nature, so
we refrain from giving them here—there is e.g. a functional equation for the 7-logarithm
in two variables with 274 terms (which are grouped into 24 orbits under the action of a
group of order 18).

8



References:

[B-D] Beilinson, A.A., Deligne, P., Polylogarithms and regulators, preprint 1992.
[Bl] Bloch, S., Applications of the dilogarithm function in algebraicK-theory and algebraic

geometry, Proc. Int. Symp. Alg. Geometry, Kyoto (1977), 1-14.
[Bo] Borel, A., Cohomologie de SLn et valeurs de fonctions zêta aux points entiers, Ann.
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