
Dr Jochen Einbeck CMStatistics Tutorial 1: R programming and Gaussian mixtures

December 2019 Durham University

Basic programming (Part I)

if/then

This command performs an action if the condition is met. One can specify an alternative action2 if an
alternative condition2 is met, and a further alternative action3 if not any condition was met.

if (condition){
action

} else if (condition2){
action2

} else {
action3

}

Both the parts commencing with else and else if are optional and can be omitted. For instance, the
command

if (log(10)<pi){
pi

} else {
log(10)

}

gives the value of pi.

for

A for loop repeats an action for all elements of a set. Formally,

for (i in set){
action

}

For instance,

for (i in 1:10){
cat(‘This is loop’, i, ‘\n’)

}

will produce 10 rows of text which report the number of the loop (The string ‘\ n’ is borrowed from the
C language and means to start a new line).

while

A while loop works similar as for, but instead of working though a set, it checks in every iteration whether
a condition is met:

while (condition){
action

}

apply

This function allows to carry out some operation onto all rows or columns of a matrix. For instance, if W
is a n× p matrix, then

apply(W, 1, sum)

would give a n× 1 vector which contains the sums over each row, and

apply(W, 2, mean)

would give the column means. Useful variants are tapply (carries out operations on the elements of W
grouped by a factor, the name of which is given as second argument), and lapply (for operations on each
element of a list W; here the second argument is not needed).

Functions

Functions allow to prepare some code which can be used later with different function arguments. For
instance,

testlog <- function(x){
if (x>0){

log(x)

} else {
cat("log not defined for non-positive argument.")

}
}
will give the logarithm of x if x is positive, and an error message otherwise.

Functions can also have more than one argument, which are then separated by commas. Default values
can be given behind a = symbol, for instance

max1<- function(a,b=1){
result<- max(a,b)

return(result)

}
max1(0.5)

[1] 1

max1(0.5,0)

[1] 0.5

Finite Gaussian Mixtures (Part II)

Finite Gaussian mixtures

Assume we are given K univariate normal distributions N(µk, σ
2
k), k = 1, . . . ,K. A finite Gaussian mixture

is a distribution which draws with probability pk from the k−th normal distribution. Formally, the density
of a finite Gaussian mixture is given by

f(y|θ) =

K∑
k=1

pkφ(y|µk, σ2k) (1)

where K < ∞ is the number of mixture components, θ = (p1, . . . , pK−1, µ1, . . . , µK , σ1, . . . , σK)T is the

vector of parameters, and φ(y|µk, σ2k) = 1√
2πσ2

k

exp

{
−1

2

(
y−µk
σk

)2}
is the probability density function of a

normal distribution with mean µk and variance σ2k, evaluated at y. Note that pK = 1−
∑K−1

k=1 pk.

Of course, this could be generalized to mixtures of multivariate Gaussian distributions, or mixtures of
other distributions than Gaussians (such as Poisson), but we will not do this in this course.

Estimation of Gaussian mixtures

Given some data yi, i = 1, . . . , n, we wish to obtain an estimator, θ̂, of θ. This is done by the EM
algorithm (Expectation - Maximization). Based on a vector of starting values, say θ0, the EM algorithm
iterates between....

E-step Update membership probabilities wik = P (obs. i belongs to comp. k) via

wik =
pkφ(y|µk, σ2k)∑K
`=1 p`φ(y|µ`, σ2`)

(2)

M-Step Update parameter estimates via

p̂k =
1

n

n∑
i=1

wik (3)

µ̂k =

∑n
i=1wikyi∑n
i=1wik

(4)

σ̂2k =

∑n
i=1wik(yi − µk)2∑n

i=1wik
(5)

...until convergence is reached.

Derivation of EM algorithm for Gaussian mixtures

Complete Likelihood. Given some data yi, i = 1, . . . , n, we wish to obtain an estimator, θ̂, of θ. Let G
be the random vector which draws a class k ∈ {1, . . . ,K}. We know that P (G = k) = pk. Denoting
fik ≡ P (yi|G = k) = φ(Y |µk, σ2k), then we also know that

P (yi, G = k) = P (yi|G = k)P (G = k) = fikpk (6)

The key idea is now as follows. Assume that, for an observation yi, the value of G is known, i.e. we
know to which of the K components the i−th observation belongs. We can express this knowledge
through an indicator variable,

Gik =

{
1 if observation i belongs to component k
0 otherwise.

This gives “complete” data (yi, Gi1, . . . GiK), i = 1, . . . , n, with probability

P (yi, Gi1, . . . , GiK) =

K∏
k=1

(fikpk)
Gik

(this follows from (6) since only one of the Gik’s is true). The corresponding likelihood function,
called complete likelihood, is

L∗(θ|y1, . . . , yn) =
n∏
i=1

K∏
k=1

(pkfik)
Gik . (7)

One obtains the log-likelihood

`∗ = logL∗ =

n∑
i=1

K∑
k=1

Gik log pk +Gik log fik (8)

E-step. As the Gik are in fact unknown, we replace them by their conditional expectations

wik ≡ E(Gik|yi) = P (Gik = 1|yi) = P (G = k|yi)

Using Bayes’ theorem, one has

wik = P (G = k|yi) =
P (G = k)P (yi|G = k)∑
` P (G = `)P (yi|G = `)

=
pkfik∑
` p`fi`

which is equivalent to the expression provided in (2).

M-step. Setting ∂`∗/∂µk = 0 and ∂`∗/∂σk = 0 for k = 1, . . . ,K, one obtains exactly the estimates which
are given for µk and σk in (4) and (5), respectively. For the pk, one needs to apply a Lagrange
multiplier since

∑K
k=1 pk = 1. Setting

∂

(
`∗ − λ(

K∑
k=1

pk − 1)

)
/∂pk = 0, k = 1, . . . ,K

one obtains the updated formula for pk given in (3).

Convergence was proven in Dempster et al. (1977), Wu (1983).

Simulation from Gaussian mixtures

Given a set of parameters θ, data are simulated from a Gaussian mixture in two steps: Firstly we draw a
k ∈ {1, . . . ,K}, then we simulate from a Gaussian:

• Draw a value x from a uniform distribution on [0, 1] (using runif). If

x ∈

k−1∑
j=1

pj ,
k∑
j=1

pj

 ,
we decide for component k.

• Draw a value y from a normal distribution with mean µk and variance σ2 (using rnorm).

Likelihood and Disparity

We wish to compute the likelihood L(θ̂|y1, . . . , yn) (this is not the complete likelihood used in EM) of the
fitted model. One has

L(θ̂|y1, . . . , yn) =
n∏
i=1

f(yi|θ̂) =
n∏
i=1

(
K∑
k=1

p̂kφ(yi|µ̂k, σ̂2k)

)
(9)

so that the log-likelihood is given by

`(θ̂|y1, . . . , yn) =
n∑
i=1

log f(yi|θ̂) =
n∑
i=1

log

(
K∑
k=1

p̂kφ(yi|µ̂k, σ̂2k)

)
. (10)

An alternative quantity which is often more convenient to use and interpret (for instance, in conjunction
with likelihood ratio tests, see below), is the disparity

D(θ̂|y1, . . . , yn) = −2 logL(θ̂|y1, . . . , yn) = −2`(θ̂|y1, . . . , yn).

For the computation of either of these, we will need to compute all entries of the n ×K matrix, say F ,
which is defined by the values of

p̂kφ(yi|µ̂k, σ̂2k), 1 ≤ i ≤ n, 1 ≤ k ≤ K.

Note that, with y =(y1, . . . yn), the command

pi[k] ∗ dnorm(y, mu[k], sigma[k])

provides immediately the k−th column of F .

Likelihood ratio test for K

We wish to test
H0 : K = K0 vs. H1 : K = K0 + 1.

Denote by θ̂K the estimate of θ when K mixture components are used.
Wilk’s likelihood ratio statistics:

W = −2 log
L(θ̂K0 |y1, . . . , yn)

L(θ̂K0+1|y1, . . . , yn)
=

= D(θ̂K0 |y1, . . . , yn)−D(θ̂K0+1|y1, . . . , yn)

The actual test is implemented through the bootstrap:

(i) Compute W as above. Call this value W0.

(ii) From the model with K0 components, simulate, say, 99 data sets of size n.

(iii) For each of these 99 data sets, recalculate θ̂K0 and θ̂K0+1, and compute the corresponding values of
W .

(iv) Find the position P of W0 within all the other values of W . The p−value is given by 1− P/100.

For details, see Aitkin, Francis, Hinde, and Darnell (2009), Statistical Modelling in R, page 442.

