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Motivation: Data with unobserved heterogeneity

Recession velocities of galaxies (km/s)
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Measurements on rock samples from a petroleum reservoir
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Aim: Fit ‘mixture’ distribution
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Gaussian mixture models

• multivariate data set Y = (y1, . . . , yn) ∈ Rp

• unobserved heterogeneity (“clustering”)

• represented by mixture components k = 1, . . . ,K

• Finite Gaussian mixture model: f(yi) =
∑K
k=1 πkf(yi|µk,Σk),

where

f(yi|µk,Σk) =

= (2π)−p/2|Σk|−1/2 exp
{
−1

2(yi − µk)TΣ−1
k (yi − µk)

}
,

• Parameters: {πk, µk,Σk}1≤k≤K ; restriction πK = 1−
∑K−1
k=1 πk.
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Why do this?

• Visualization

• Ability to simulate new data (evolutionary algorithms, etc)

• Correct representation of heterogeneity in further inference, for
instance regression models

• Identification of subpopulations/clusters

• Classification of new observations

• ...
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Estimation

• Need to estimate µk, πk,Σk, k = 1, . . . ,K from data yi, i =
1, . . . , n.

• Idea: If, for each yi, we knew to which class k it belonged, then
estimation straightforward.

• However, we do not know this. But, assuming given ‘current’ values
of µk, πk,Σk, k = 1, . . . ,K, we can compute the probability that
case i belongs to class k via Bayes’ theorem as

wik ≡ P (k|yi) = P (yi|k)P (k)∑
` P (yi|`)P (`) = f(yi|µk,Σk)πk∑K

`=1 f(yi|µ`,Σ`)π`
.
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Estimation via EM algorithm

• Fix K and choose starting values for µk, πk,Σk, k = 1, . . . ,K. Then, iterate
between...

• E-step: Update posterior probabilities of class membership,

wik = πkf(yi|µk,Σk)∑K

`=1 π`f(yi|µ`,Σ`)
.

• M-step: Update parameter estimates via

π̂k = 1
n

n∑
i=1

wik; µ̂k =
∑n

i=1 wikyi∑n

i=1 wik

;

Σ̂k =
∑n

i=1 wik(yi − µk)(yi − µk)T∑n

i=1 wik

.

• ... until convergence is reached (convergence proven in Dempster et al., 1997,
Wu, 1983).
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Estimates for rock data

π̂1 = 0.5; π̂2 = 0.5;

µ̂1 =
(

4014.2
0.1773

)
;

µ̂2 =
(

1353.9
0.2588

)
;

Σ̂1 =
(

275805 13.3909
13.3909 0.00238

)
;

Σ̂1 =
(

220173 −6.06322
−6.06322 0.00839

)
.
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Estimates for rock data (cont’d)

Posterior probabilities wik:
k=1 k=2

1 0.969 0.031
2 1.000 0.000
3 1.000 0.000
4 1.000 0.000
5 1.000 0.000
6 1.000 0.000
7 1.000 0.000
8 1.000 0.000
9 1.000 0.000
10 0.997 0.003
11 1.000 0.000
12 1.000 0.000

....
45 0.000 1.000
46 0.000 1.000
47 0.000 1.000
48 0.000 1.000
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Special case: Univariate Gaussian mixture model

Consider the model

f(y|θ) =
K∑
k=1

πkφµk,σ
2
k
(y) (1)

where θ = {πk, µk, σk}1≤k≤K , and

φµk,σ
2
k
(y) = 1√

2πσ2
k

exp
{
−1

2

(
y − µk
σk

)2
}

is the density of a (one-dimensional) normal distribution N(µk, σ2
k), eval-

uated at y. Note that πK = 1−
∑K−1
k=1 πk.
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Derivation of EM algorithm for univariate Gaussian mixtures

• Given data yi, i = 1, . . . , n, we wish to obtain an estimator, θ̂, of θ.

• Define fik = φµk,σ
2
k
(yi), so f(yi|θ) =

∑
k πkfik.

• Then one has the Likelihood function

L(θ|y1, . . . , yn) =
n∏
i=1

f(yi|θ) =
n∏
i=1

(
K∑
k=1

πkfik

)

and the corresponding log-likelihood

`(θ|y1, . . . , yn) =
n∑
i=1

log(
K∑
k=1

πkfik)

• However, ∂`∂θ = 0 has no (analytic) solution!
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Derivation of EM algorithm for univariate Gaussian mixtures

• Idea: Give the likelihood some more ‘information.’ Assume that, for an observation
yi, we know to which of the K components it belongs; i.e. we assume we know

Gik =
{

1 if observation i belongs to component k

0 otherwise.

• Then we also know

P (Gik = 1) = πk (“prior”)
P (yi, Gik = 1) = P (yi|Gik = 1)P (Gik = 1) = fikπk (2)

• This gives complete data (yi, Gi1, . . . GiK), i = 1, . . . , n, with

P (yi, Gi1, . . . , GiK) =
K∏

k=1

(fikπk)Gik .
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Derivation of EM algorithm for univariate Gaussian mixtures

• The corresponding likelihood function, called complete likelihood, is

L∗(θ|y1, . . . , yn) =
n∏
i=1

K∏
k=1

(πkfik)Gik . (3)

• One obtains the complete log-likelihood

`∗ = logL∗ =
n∑
i=1

K∑
k=1

Gik log πk +Gik log fik (4)

• As the Gik are unknown, we replace them by their expectations

wik ≡ E(Gik|yi) = P (Gik = 1|yi) = πkfik∑
` π`fi`

This corresponds to the E-Step as explained earlier.
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Derivation of EM algorithm for univariate Gaussian mixtures

• For the M-step, set

∂`∗

∂µk
= 0; ∂`∗

∂σk
= 0;

∂
(
`∗ − λ(

∑K
k=1 πk − 1)

)
∂πk

= 0;

yielding

µ̂k =
∑n
i=1wikyi∑n
i=1wik

; (5)

σ̂2
k =

∑n
i=1wik(yi − µ̂k)2∑n

i=1wik
; (6)

π̂k =
∑n
i=1wik
n

. (7)
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Likelihood spikes

• Problem: If an individual data
point, say x0, ‘captures’ a mix-
ture component (i.e., µk = x0
and σ2

k −→ 0), one obtains a
spurious solution with infinite
likelihood.

• Most simple solution: Set all
σk ≡ σ. In this case, expres-
sion (6) becomes

σ̂2 = 1
n

n∑
i=1

K∑
k=1

wik(yi − µ̂k)2.

σ̂4 = 207.4 σ̂4 = 9.1× 10−3

after 2 iterations
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after 3 iterations
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Implementation

• In the practical part, we will implement the EM algorithm for uni-
variate Gaussian mixtures, for equal component variances σ2

k = σ2.

• We will use the statistical programming language R, which is freely
available from https://cran.r-project.org/.

• R works best in conjunction with the (free) software RStudio, which
includes an Editor.

• Please follow the instructions on the R source code file that you
have been given; and make use of the Handout.
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https://cran.r-project.org/
http://www.maths.dur.ac.uk/~dma0je/PG/Mix/MSc/CodeMSc19.r
http://www.maths.dur.ac.uk/~dma0je/PG/Mix/MSc/HandoutMSc19.pdf
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