The EM algorithm for finite Gaussian mixtures

Jochen Einbeck

January 18, 2019

Motivation: Data with unobserved heterogeneity

Measurements on rock samples from a petroleum reservoir

University

Durham Jochen Einbeck (Advanced Statistics and Machine Learning' lecture, 18/01/2019

Aim: Fit 'mixture' distribution

Gaussian mixture models

- multivariate data set $Y = (y_1, \dots, y_n) \in \mathbb{R}^p$
- unobserved heterogeneity ("clustering")
- represented by mixture components $k = 1, \dots, K$
- Finite Gaussian mixture model: $f(y_i) = \sum_{k=1}^{K} \pi_k f(y_i | \mu_k, \Sigma_k)$, where

$$f(y_i|\mu_k, \Sigma_k) = = (2\pi)^{-p/2} |\Sigma_k|^{-1/2} \exp\left\{-\frac{1}{2}(y_i - \mu_k)^T \Sigma_k^{-1}(y_i - \mu_k)\right\},\$$

• Parameters: $\{\pi_k, \mu_k, \Sigma_k\}_{1 \le k \le K}$; restriction $\pi_K = 1 - \sum_{k=1}^{K-1} \pi_k$.

- Visualization
- Ability to simulate new data (evolutionary algorithms, etc)
- Correct representation of heterogeneity in further inference, for instance regression models
- Identification of subpopulations/clusters
- Classification of new observations

• ...

Estimation

- Need to estimate $\mu_k, \pi_k, \Sigma_k, k = 1, \dots, K$ from data $y_i, i = 1, \dots, n$.
- Idea: If, for each y_i , we knew to which class k it belonged, then estimation straightforward.
- However, we do not know this. But, assuming given 'current' values of $\mu_k, \pi_k, \Sigma_k, k = 1, \dots, K$, we can compute the probability that case *i* belongs to class *k* via Bayes' theorem as

$$w_{ik} \equiv P(k|y_i) = \frac{P(y_i|k)P(k)}{\sum_{\ell} P(y_i|\ell)P(\ell)} = \frac{f(y_i|\mu_k, \Sigma_k)\pi_k}{\sum_{\ell=1}^{K} f(y_i|\mu_\ell, \Sigma_\ell)\pi_\ell}$$

Jochen Einbeck | 'Advanced Statistics and Machine Learning' lecture, 18/01/2019

Estimation via EM algorithm

- Fix K and choose starting values for $\mu_k, \pi_k, \Sigma_k, k = 1, \dots, K$. Then, iterate between...
- E-step: Update posterior probabilities of class membership,

$$w_{ik} = \frac{\pi_k f(y_i | \mu_k, \Sigma_k)}{\sum_{\ell=1}^K \pi_\ell f(y_i | \mu_\ell, \Sigma_\ell)}.$$

• M-step: Update parameter estimates via

$$\hat{\pi}_{k} = \frac{1}{n} \sum_{i=1}^{n} w_{ik}; \qquad \hat{\mu}_{k} = \frac{\sum_{i=1}^{n} w_{ik} y_{i}}{\sum_{i=1}^{n} w_{ik}};$$
$$\hat{\Sigma}_{k} = \frac{\sum_{i=1}^{n} w_{ik} (y_{i} - \mu_{k}) (y_{i} - \mu_{k})^{T}}{\sum_{i=1}^{n} w_{ik}}.$$

 ... until convergence is reached (convergence proven in Dempster et al., 1997, Wu, 1983).

Estimates for rock data

2

University

Durham Jochen Einbeck 'Advanced Statistics and Machine Learning' lecture, 18/01/2019

Posterior probabilities w_{ik} :

	k=1	k=2
1	0.969	0.031
2	1.000	0.000
3	1.000	0.000
4	1.000	0.000
5	1.000	0.000
6	1.000	0.000
7	1.000	0.000
8	1.000	0.000
9	1.000	0.000
10	0.997	0.003
11	1.000	0.000
12	1.000	0.000
45	0.000	1.000
46	0.000	1.000
47	0.000	1.000
48	0.000	1.000

University

Durham Jochen Einbeck 'Advanced Statistics and Machine Learning' lecture, 18/01/2019

Consider the model

$$f(y|\theta) = \sum_{k=1}^{K} \pi_k \phi_{\mu_k, \sigma_k^2}(y) \tag{1}$$

where $\boldsymbol{\theta} = \{\pi_k, \mu_k, \sigma_k\}_{1 \leq k \leq K}$, and

$$\phi_{\mu_k,\sigma_k^2}(y) = \frac{1}{\sqrt{2\pi\sigma_k^2}} \exp\left\{-\frac{1}{2}\left(\frac{y-\mu_k}{\sigma_k}\right)^2\right\}$$

is the density of a (one-dimensional) normal distribution $N(\mu_k, \sigma_k^2)$, evaluated at y. Note that $\pi_K = 1 - \sum_{k=1}^{K-1} \pi_k$.

Jochen Einbeck | 'Advanced Statistics and Machine Learning' lecture, 18/01/2019

- Given data $y_i, i = 1, \dots, n$, we wish to obtain an estimator, $\hat{\theta}$, of θ .
- Define $f_{ik} = \phi_{\mu_k, \sigma_k^2}(y_i)$, so $f(y_i|\theta) = \sum_k \pi_k f_{ik}$.
- Then one has the Likelihood function

$$L(\theta|y_1,\ldots,y_n) = \prod_{i=1}^n f(y_i|\theta) = \prod_{i=1}^n \left(\sum_{k=1}^K \pi_k f_{ik}\right)$$

and the corresponding log-likelihood

$$\ell(\theta|y_1,\ldots,y_n) = \sum_{i=1}^n \log(\sum_{k=1}^K \pi_k f_{ik})$$

• However, $\frac{\partial \ell}{\partial \theta} = 0$ has no (analytic) solution!

• Idea: Give the likelihood some more 'information.' Assume that, for an observation y_i , we know to which of the K components it belongs; i.e. we assume we know

$$G_{ik} = \left\{ \begin{array}{ll} 1 & \text{if observation} \quad i \quad \text{belongs to component} \quad k \\ 0 & \text{otherwise.} \end{array} \right.$$

• Then we also know

$$P(G_{ik} = 1) = \pi_k \quad ("prior")$$

$$P(y_i, G_{ik} = 1) = P(y_i | G_{ik} = 1) P(G_{ik} = 1) = f_{ik} \pi_k \quad (2)$$

• This gives complete data $(y_i, G_{i1}, \ldots, G_{iK})$, $i = 1, \ldots, n$, with

$$P(y_i, G_{i1}, \dots, G_{iK}) = \prod_{k=1}^K (f_{ik} \pi_k)^{G_{ik}}.$$

Jochen Einbeck | 'Advanced Statistics and Machine Learning' lecture, 18/01/2019

• The corresponding likelihood function, called complete likelihood, is

$$L^*(\theta|y_1,\ldots,y_n) = \prod_{i=1}^n \prod_{k=1}^K (\pi_k f_{ik})^{G_{ik}}.$$
 (3)

• One obtains the complete log-likelihood

$$\ell^* = \log L^* = \sum_{i=1}^n \sum_{k=1}^K G_{ik} \log \pi_k + G_{ik} \log f_{ik}$$
(4)

• As the G_{ik} are unknown, we replace them by their expectations

$$w_{ik} \equiv E(G_{ik}|y_i) = P(G_{ik} = 1|y_i) = \frac{\pi_k f_{ik}}{\sum_{\ell} \pi_{\ell} f_{i\ell}}$$

This corresponds to the **E-Step** as explained earlier.

• For the M-step, set

$$\frac{\partial \ell^*}{\partial \mu_k} = 0; \quad \frac{\partial \ell^*}{\partial \sigma_k} = 0; \quad \frac{\partial \left(\ell^* - \lambda (\sum_{k=1}^K \pi_k - 1)\right)}{\partial \pi_k} = 0;$$

yielding

$$\hat{\mu}_{k} = \frac{\sum_{i=1}^{n} w_{ik} y_{i}}{\sum_{i=1}^{n} w_{ik}};$$
(5)

$$\hat{\sigma}_{k}^{2} = \frac{\sum_{i=1}^{n} w_{ik} (y_{i} - \hat{\mu}_{k})^{2}}{\sum_{i=1}^{n} w_{ik}};$$
(6)

$$\hat{\pi}_{k} = \frac{\sum_{i=1}^{n} w_{ik}}{n}.$$
(7)

Jochen Einbeck 'Advanced Statistics and Machine Learning' lecture, 18/01/2019

Likelihood spikes

- Problem: If an individual data point, say x_0 , 'captures' a mixture component (*i.e.*, $\mu_k = x_0$ and $\sigma_k^2 \longrightarrow 0$), one obtains a spurious solution with infinite likelihood.
- Most simple solution: Set all $\sigma_k \equiv \sigma$. In this case, expression (6) becomes

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n \sum_{k=1}^K w_{ik} (y_i - \hat{\mu}_k)^2.$$

$$\hat{\sigma}_4 = 207.4$$
 $\hat{\sigma}_4 = 9.1 \times 10^{-3}$

図

Universit

Durham Jochen Einbeck 'Advanced Statistics and Machine Learning' lecture, 18/01/2019

- In the practical part, we will implement the EM algorithm for univariate Gaussian mixtures, for equal component variances $\sigma_k^2 = \sigma^2$.
- We will use the statistical programming language R, which is freely available from https://cran.r-project.org/.
- R works best in conjunction with the (free) software RStudio, which includes an Editor.
- Please follow the instructions on the R source code file that you have been given; and make use of the Handout.