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Abstract. Using the theta correspondence, we study a lift from (not necessarily
rapidly decreasing) closed differential (p − n)-forms on a non-compact arithmetic
quotient of hyperbolic p-space to Siegel modular forms of degree n. This generalizes
earlier work of Kudla and the second named author (in the case of hyperbolic space).
We give a cohomological interpretation of the lift and analyze its Fourier expansion
in terms of periods over certain cycles. For Riemann surfaces, i.e., the case p = 2,
we obtain a complete description using the theory of Eisenstein cohomology.

1. Introduction

Throughout the 1980’s, Kudla and the second named author studied integral trans-
forms Λ from closed differential forms on arithmetic quotients of the symmetric spaces
of orthogonal and unitary groups to spaces of classical Siegel and Hermitian modular
forms ([11, 12, 13, 14]). These transforms came from the theory of dual reductive
pairs and the theta correspondence.

In [14] they computed the Fourier expansion of Λ(η) in terms of periods of η over
certain totally geodesic cycles under the assumption that η was rapidly decreasing.
This also gave rise to the realization of intersection numbers of these ‘special’ cycles
with cycles with compact support as Fourier coefficients of modular forms.

It is clear from [7],[4] and [6] that the situation is far more complicated when
the hypothesis of rapid decay is dropped. The purpose of this paper is to initiate
a systematic study of this transform for non rapidly decreasing differential forms η
by considering the case for the finite volume quotients of hyperbolic space coming
from unit groups of isotropic quadratic forms over Q. We expect that many of the
techniques and features of this case will carry over to the more general situation.

We now give a more precise description of this paper. Let V (Q) be a rational vector
space of dimension m = p+ 1 with a symmetric bilinear form ( , ) of signature (p, 1)
and put G(Q) = SO(V (Q)). We let L be an integral lattice in V (Q) and Γ(Q) be a
torsion-free subgroup of the stabilizer of L in G(Q). We denote by B the associated
symmetric space to G(R), and we assume that the hyperbolic manifold M = Γ\B is
non-compact.

Kudla and the second named author ([11, 12]) constructed a certain theta function
θ(τ, Z) for τ ∈ Hn, the Siegel upper half space, and Z ∈ B, which is a non-holomorphic
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Siegel modular form of weight m
2

with values in the closed differential n-forms of M .
For η a rapidly decreasing closed differential (p − n)-form in M , they then defined
the transform

(1.1) Λ(η)(τ) =

∫
M

η ∧ θ(τ, Z).

They showed that Λ(η)(τ) is a holomorphic cusp form, see [14]. Moreover, the Fourier
coefficients are given as periods of η over certain geometrically defined composite,
in general non-compact, ‘special’ cycles Cβ in M attached to positive definite β ∈
Symn(Q), i.e.,

(1.2) Λ(η)(τ) =
∑
β>0

(∫
Cβ

η

)
e2πitr(βτ).

The lift factors through the cohomology Hp−n
c (M,C) with compact support, and the

period
∫
Cβ
η is the evaluation of the pairing of [η] ∈ Hp−n

c (M,C) with the relative

cycle Cβ ∈ Hp−n(M,∂M,Z). The key point is here that the Fourier coefficients θβ of
θ(τ) are the Poincaré-dual forms of the cycles Cβ.

In the case of p = 2 and n = 1, this lift is closely related to the work of Shintani
[15] on the inverse of the Shimura lift.

The Borel-Serre compactification makes M a compact manifold with boundary M .
Here each boundary component is a (p − 1)-torus at the various cusps of M . We
develop a machinery to determine the growth of θ(τ, Z) and show

Theorem 1.1.
θ(τ, Z) extends to a smooth differential form on M . Moreover, the coefficients of the

restriction of θ(τ, Z) to each boundary component are given by a linear combination of
holomorphic Siegel cusp forms of weight m

2
coming from the orthogonal group O(p−1).

We can therefore extend the theta integral (1.1) to (p − n)-forms η on M . For
the special case n = p and η = 1, the theta integral was already studied by Kudla
([9, 10]).

Theorem 1.2.
Let η be a closed differential (p − n)-form on M . Then Λ(η)(τ) is a holomorphic

Siegel modular form of weight m
2

for a suitable congruence subgroup of Sp(n,Z).

The key point is here that there exists another, rapidly decreasing theta function
Ξ(τ, Z) such that

(1.3) ∂̄ θ(τ, Z) = dΞ(τ, Z).

Here ∂̄ operates on the τ -variable and d on the Z-variable. This, together with Stokes’
theorem, implies that Λ(η)(τ) satisfies the Cauchy-Riemann equations.

The form Ξ exists in general but it is not necessarily rapidly decreasing. Thus
the problem of when Λ(η) is holomorphic is rather delicate. In fact, in [6] it was
shown that in the case of signature (p, 2) analogous theta integrals are in general
non-holomorphic modular forms.
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We call the space of holomorphic Siegel cusp forms of weight m
2

and degree n coming
from theta series attached to O(p − 1) the space of unstable cusp forms and denote
it by Θ(n)(p − 1). (For p = 2 and n = 1, these cusp forms correspond to Eisenstein
series of weight 2 under the Shimura correspondence).

By Theorem 1.1 the image of exact forms lies in the space of unstable cusp forms.
Denoting the space of holomorphic Siegel modular forms of weight m

2
and degree n

by M
(n)
m/2, we therefore obtain

Theorem 1.3.
The transform Λ factors through the cohomology Hp−n(M,C) ' Hp−n(M,C) mod-

ulo unstable Siegel cusp forms, i.e., Λ defines a map

Λ : Hp−n(M,C) −→M
(n)
m/2/Θ

(n)(p− 1).

By Theorem 1.2 we see by the Koecher principle that the Fourier expansion of
Λ(η)(τ) is given by

(1.4) Λ(η)(τ) =
∑
β≥0

aβ(η)e2πitr(βτ)

with

(1.5) aβ(η) =

∫
M

η ∧ θβ(τ).

(For n = 1, the vanishing of the negative coefficients follows from a direct calculation
which we omit).

For the singular coefficients, the θβ(τ) turn out to be rapidly decreasing, and we
have

Theorem 1.4.

aβ(η) =

{
0 if rk(β) < n− 1

(−1)n
∫
Csβ
η if rk(β) = n− 1.

In particular, we see that Λ(η)(τ) is in general no longer a cusp form. Here, for β
positive semi-definite of rank n − 1, the ‘singular’ cycles Cs

β are linear combinations
of embedded (p − n)-subtori at each component of the Borel-Serre boundary of M .
The coefficients are values of Dirichlet series attached to the boundary components.
Note that the Cs

β can be considered as absolute cycles in M and therefore the period
of η over Cs

β is cohomological.
The calculation of the singular Fourier coefficients uses extensively ideas from [10],

where the case of n = p was considered. However, through a careful growth analysis of
the theta series involved we are able to greatly simplify the concept of the calculations,
avoiding the usage of a wave packet attached to Eisenstein series. This observation
should also be very helpful for extending the much more general results of [14].

The situation for the positive definite coefficients is considerably more complicated
as now θβ is nonzero at the boundary and therefore homotopy- and Stokes-type ar-
guments for the computation of (1.5) are no longer available. In particular, the
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calculation for η rapidly decreasing (see [13]) does not extend to arbitrary η. This
corresponds to the fact that the period

∫
Cβ
η (where Cβ is the (in general relative)

cycle mentioned above) no longer has a (co)homological interpretation.
In fact, if η is an exact form which extends to the boundary, the equation

(1.6) aβ(η)
?
=

∫
Cβ

η

is in general no longer valid! We define the ‘defect’ δβ(η) = aβ(η) −
∫
Cβ
η and show

that δβ descends to a function on Zp−n(M)/Zp−n(M,∂M), where Z∗(M) is the space
of closed differential forms on M and Z∗(M,∂M) the subspace of forms which vanish
at the boundary. Moreover, we show that the defect can be non-zero on the subspace
of exact (p− n)-forms supported near ∂M .

For the case of a Riemann surface, i.e., for the case of SO(2, 1) and n = 1, we have
a complete picture:

Theorem 1.5. Let p = 2 and n = 1. Then each class in H1(M,C) has a represen-
tative η such that

(1.7) Λ(η)(τ) =

(∫
Cs0

η

)
+
∑
β>0

(∫
Cβ

η

)
e2πiβτ .

Hence (1.7) holds in M
(1)
3/2/Θ

(1)(1) for all closed 1-forms η in M .

The point is here that via the theory of Eisenstein cohomology H1(M,C) splits
into its cuspidal (or L2) cohomology and a part defined by Eisenstein series coming
from cohomology classes at the boundary. We are able to directly compute (1.5) for
forms defined by cusp forms and Eisenstein series, thus verifying (1.6).

Furthermore, we can consider the ’truncated’ part θc(τ) of the form θ(τ), which is
obtained by subtracting the Eisenstein form of the restriction of θ(τ) to the boundary
from θ(τ) itself. θc(τ) is again a modular form of weight 3/2 with values now in the
rapidly decreasing differential 1-forms of the Riemann surface M .

For β > 0, we define Cc
β to be the homology class dual to the β-th Fourier coefficient

of θc(τ). This definition and the following result is completely analogous to the one
by Hirzebruch-Zagier for Hilbert modular surfaces ([7]):

Theorem 1.6. Let p = 2 and n = 1. The map

η 7→
∫
M

η ∧ θc(τ)

factors through H1(M,C), and if C is the homology class dual to [η], we have that∫
M

η ∧ θc(τ) = −[Cs
0 .C] +

∑
β>0

[Cc
β.C]e2πiβτ

is a holomorphic modular form of weight 3/2. Here [ . ] denotes the cohomological
intersection product.
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It seems natural to expect that this generalizes to SO(p, 1) (at least when the
Eisenstein classes involved are not residual), and we hope to come back to this issue
in the near future.

We can also define in the general case

(1.8) Λ(C)(τ) =

∫
C

θ(τ)

for C being a special cycle of complementary dimension n. For this lift, we have
complete control over the Fourier coefficients:

Theorem 1.7. Λ(C)(τ) is a holomorphic Siegel modular form of weight m
2

and degree
n and

Λ(C)(τ) =
∑
β>0

[C.Cβ]tre
2πitr(βτ) + (−1)n

∑
β≥0

rk(β)=n−1

[C.Cs
β]e2πitr(βτ).

Here [C.Cβ]tr denotes the transversal intersection number of C and Cβ in M , i.e.,
the sum of the transversal intersections counted with multiplicities.

We would like to thank Steve Kudla for many crucial discussions and his encour-
agement. The first named author would like to thank the Max-Planck-Institut für
Mathematik in Bonn and the Department of Algebra and Geometry at the University
of Barcelona for their hospitality where major work for this paper was done.

2. Preliminaries

Let V (Q) be a rational vector space of dimension m = p + 1 and let ( , ) be a
non-degenerate symmetric bilinear form on V (Q) with signature (p, 1). Let L ⊂ V (Q)
be an integral Z-lattice of full rank, i.e., L ⊂ L#, the dual lattice. We let G(Q) =
SO(V (Q)) viewed as an algebraic group over Q. We denote by Γ(L) the stabilizer of
the lattice L and fix a neat subgroup Γ of finite index in Γ(L) ∩ G0(R), which acts
trivially on L#/L. Here G0(R) is the connected component of the identity of G(R).

Let B be the real hyperbolic space of dimension p and realize B as one component
of the two-sheeted hyperboloid of vectors of length −1:

(2.1) B = {Z ∈ V (R) : (Z,Z) = −1}0.

Fix a base point Z0 ∈ B and let K be the stabilizer of Z0 in G0(R). Then K '
SO(p) is a maximal compact subgroup of G0(R), and we have

(2.2) B ' G0(R)/K.

Note that we can identify B as the set of negative lines in V (R) and therefore also as
the space of minimal majorants of ( , ) by defining, for Z ∈ B, the majorant

(2.3) ( , )Z =

{
( , ) on Z⊥;

−( , ) on RZ.
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For the tangent space TZ(B) we have the standard canonical identification

(2.4) TZ(B) ' Z⊥.

We fix an orientation on V , and this induces an orientation of B by requiring that, for
every properly oriented basis {w1, ..., wp} for TZ(B) ' Z⊥, the basis {w1, ..., wp, Z} is
properly oriented for V . Note that the action of G0(R) on B preserves this orientation.

We assume that the hyperbolic manifold M = Γ\B is non-compact. It is well
known [1] that this is the case if and only if V (Q) has an isotropic vector. Then Γ
acts with finitely many orbits on the set of isotropic lines in V (Q), the cusps of M .
We choose cusp representatives `0, `1, ..., `r and primitive vectors uj ∈ L such that

(2.5) `j = Quj and (uj, Z) < 0

for all Z ∈ B. We will express this second condition by saying ui is forward pointing.
We note that every null line has a canonical orientation given by the class of a forward
pointing vector. We also choose gj ∈ G0(Q) = G(Q) ∩G0(R) such that

(2.6) gj u0 = uj

and with g0 = 1. Pick another isotropic vector u′0 ∈ V (Q) such that (u0, u
′
0) = −1/2.

This gives an isomorphism

(2.7) `⊥0 /`0 ' W (Q) := [u0, u
′
0]⊥

Note that W is positive definite of dimension p− 1. We choose a basis {w1, ..., wp−1}
of W such that u0, w1, ..., wp−1, u

′
0 is a positively oriented basis for V (Q) and call such

a basis a Witt basis for V (Q). Note that this also gives rise to an orientation of `⊥0 /`0.
With respect to this basis, ( , ) is of the form

(2.8) ( , ) ∼

 −1/2
S

−1/2

 ,

where S is the matrix of the bilinear form restricted to W .
We can assume that the base point Z0 is rational and contained in the hyperbolic

plane [u0, u
′
0]. Since we assumed (Z,Z) = −1 and (Z, u0) < 0, we see that Z0 =

u0 + u′0, i.e., in coordinates:

(2.9) Z0 =

1
0
1

 .

Note that majorant ( , )Z0 =: ( , )0 associated to the base point Z0 is given by

(2.10) ( , )0 ∼

1/2
S

1/2

 .

We pick another basis for V (R) as follows. We let

(2.11) e1 = u0 − u′0 and ep+1 = u0 + u′0 = Z0.
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We have (e1, e1) = 1 and e1 ⊥ Z0 and extend e1 to an orthonormal basis {e1, · · · , ep}
for Z⊥0 . With respect to this basis {e1, · · · , ep+1} the bilinear form has the matrix

(2.12) ( , ) ∼


1

. . .
1
−1

 .

Let g be the Lie algebra of G0(R) and k be that of K. We then have the Cartan
decomposition

(2.13) g = k + p,

where p is the orthogonal complement of k with respect to the Killing form. We
identify p with Z⊥0 in an SO(p)-equivariant way via

(2.14)
Z⊥0

∼−→ p
v 7−→ v ∧ Z0,

where w ∧ w′ ∈
∧2 V is identified with an element of g given by

(2.15) (w ∧ w′)(v) = (w, v)w′ − (w′, v)w.

We identify the basis {e1, · · · , ep} for Z⊥0 with a basis of p. With respect to this
basis we have

(2.16) p '
{(

0 v
tv 0

)
: v ∈ Z⊥0

}
.

We let {ω1, · · · , ωp} be the dual basis of p∗ corresponding to this basis.
We will denote coordinates with respect to the Witt basis {u0, w1, ..., wp−1, u

′
0} with

yij and coordinates with respect to the basis {ei} with xij.

Let P be the Q -parabolic subgroup of G defined by

(2.17) P (Q) = {g ∈ G(Q) : g`0 = `0}.
Then for the unipotent radical N(Q) of P (Q), we have

(2.18) N(Q) ' W (Q),

and the isomorphism is explicitly given by

(2.19) N(Q) '

n(w) =

1 2(·, w) (w,w)
1W w

1

 : w ∈ W (Q)

.
The maximal Q -split torus A(Q) is given by

(2.20) A(Q) '

a(t) =

t 1W
t−1

 : t ∈ Q

 .

We define

(2.21) M = P (R) ∩K ' SO(W (R))
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and have the standard decompositions

(2.22) G0(R) = N(R)A0(R)K

and

(2.23) P0(R) = N(R)A0(R)M,

where P0(R) = P (R) ∩G0(R) and A0(R) = A(R) ∩G0(R) ' R+.
For t ∈ R+, let

(2.24) At = {a(t′) ∈ A0(R) : t′ > t},
and for an open relatively compact subset ω ⊂ N(R), define the Siegel set

(2.25) St = ωAtK ⊂ G0(R).

Then by [1] there exists a Siegel set S ⊂ G0(R) such that

(2.26) G0(R) =
⋃
j

ΓgjS

and

(2.27) B =
⋃
j

ΓgjS
′,

where S′ = S · Z0.
Let Nj, 0 ≤ j ≤ r, be the point-wise stabilizer of the cusps `j = Quj in N and

Γj = Nj ∩ Γ. We have

(2.28) Nj = gjNg
−1
j .

There exist lattices Λj ⊂ W (Q) such that

(2.29) Γj = {gjn(λ)g−1
j : λ ∈ Λj}.

Recall that by adding for each cusp `j the torus Γj\Nj to the manifold M = Γ\B
we obtain (with the appropriate topology) the compact manifold with boundary M̄ .
This is the Borel-Serre compactification, see [3]. We have

M = M

r∐
j=0

Γj\Nj.(2.30)

We introduce upper-half space coordinates on B associated to an isotropic line,
which we take to be `0. We consider the map

(2.31) σ : A0(R)×N(R) −→ B

given by

(2.32) σ(a, n) = n aZ0

Via the parametrization of A0(R)×N(R) by R+ ×Rp−1 we obtain coordinates on B
by

(2.33) (t, b) 7−→ Z(t, b) := n(b) a(t)Z0.
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We have

(2.34) Z(t, b) =

t+ t−1(b, b)
t−1b
t−1

 ,

where we identified Rp−1 with W (R) ' N(R). We observe that in P(V ) we have

(2.35) lim
t→∞

Z(t, b) = `0,

whereas in the Borel-Serre enlargement of B we have limt→∞ Z(t, b) = b ∈ `⊥0 /`0.
We extend σ to N × A × K −→ G by σ(n, a, k) = nak, and this induces an

isomorphism between the left-invariant forms on NA and the horizontal left-invariant
forms on G which we identify with p∗. It is easily seen that a basis for the left-invariant
forms on NA is given (in terms of the left-invariant forms dt

t
on A and dbi, 1 ≤ i ≤ p−1

on N) by {ν1, ν2, · · · , νp}, where

(2.36) ν1 =
dt

t
and νi =

dbi−1

t
for 2 ≤ i ≤ p.

We have

Lemma 2.1.

σ∗ ωi = νi for 1 ≤ i ≤ p.

Proof. We only have to prove this at the identity. Then the basis {ν1, · · · , νp} for
a∗ + n∗ is dual to the basis {2u0 ∧ u′0, 2ej ∧ u0, 2 ≤ j ≤ p}. The image of this basis
under dσ|e when projected onto p (the horizontal Maurer-Cartan forms annihilate k)
is the basis {e1 ∧ ep+1, e2 ∧ ep+1, · · · , ep ∧ ep+1}. But this basis is dual to {ωi} per
definitionem. �

We will need a refinement of these coordinates associated to positive semi-definite
subspace U of V (Q) of dimension n such that the radical

(2.37) R(U) = {u ∈ U : (u, U) = 0}
is non-zero. In this case we see by signature considerations that there exists a rational
isotropic line ` such that

(2.38) R(U) = `.

We may choose the above Witt decomposition such that

(2.39) U = `0 + U ∩W,
i.e., ` = `0. We write U ′ = U ∩W and let U ′′ be the orthogonal complement of U ′ in
W , hence

(2.40) W = U ′ ⊕ U ′′,
with the summands orthogonal for both ( , ) and ( , )0.

We define subgroups N ′ and N ′′ of N with

(2.41) N ′ ' U ′ and N ′′ ' U ′′
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under the isomorphism from W to N . We also define

NU = {n ∈ N : n|U = id} = {n ∈ N : n|U ′ = id}.
We observe that

(2.42) NU = N ′′.

Indeed, for w,w′ ∈ W , we have n(w)w′ = w′ + (w,w′)u0, whence NU = (U ′)⊥ = U ′′.
We can write

(2.43) n(b) = n(b′)n(b′′)

with n(b′) ∈ N ′ and n(b′′) ∈ N ′′; so b′ ∈ Rn−1 ' U ′ and b′′ ∈ Rp−n ' U ′′. We obtain
a product decomposition

(2.44) σ : R+ × Rn−1 × Rp−n −→ B

with

(2.45) σ(t, b′, b′′) = Z(t, b′, b′′) := n(b′)n(b′′)a(t)Z0.

3. Special Cycles

We define special cycles in B as follows: Let U be a positive definite subspace of
V (R) of dimension n ≤ p, and define

(3.1) BU = {Z ∈ B : Z ⊥ U}.
Note that BU is a totally geodesic submanifold, isomorphic to the hyperbolic space
of dimension p − n. If U = spanRX for an n-frame X = (x1, · · · , xn) in V (R), we
also write BX for BU . An orientation on U (say, coming from X) induces one on BU

as follows. We have a canonical isomorphism

(3.2) TZ(BU) ' Z⊥ ∩ U⊥.
Then TZ(BU) receives an orientation by the rule that the orientation of TZ(BU)
followed by the orientation of U = U ∩ Z⊥ is the orientation of TZ(B) ' Z⊥.

Let GU be the point-wise stabilizer of U in G and put ΓU = Γ ∩ GU . We then
define CU = ΓU\BU ; the image of BU in M .

For β ∈ Symn(Q), we consider the corresponding hyperboloid

(3.3) Ωβ = {X ∈ V (Q) :
1

2
(X,X) = β},

with (X,X)ij = (xi, xj).
We fix a congruence condition h ∈

(
L#
)n

once and for all.
If β is positive definite, then Γ acts on Ωβ ∩ (Ln +h) with finitely many orbits, and

we define the composite cycle

(3.4) Cβ =
∑

Γ\Ωβ∩(Ln+h)

CX .

We now construct special cycles on the Borel-Serre boundary of M . Let U be a
positive semidefinite subspace of V (Q) of dimension n with nonzero radical R(U) = `.
We denote the unipotent radical of the parabolic associated to ` by N` ' `⊥/` and



CYCLES IN HYPERBOLIC MANIFOLDS AND SIEGEL MODULAR FORMS 11

write Γ` = Γ ∩ N`. The boundary component corresponding to the cusp ` is the
(p − 1)-torus Γ`\N` with universal cover `⊥/`. We then define the (p − n) cycle BU

at the boundary by

(3.5) BU = {w ∈ `⊥/` : (U,w) = 0}.
We write CU = ΓU\BU with ΓU = NU ∩ Γ` and note that in the Borel-Serre

compactification this cycle only depends on the equivalence class of the cusp `; i.e.,
we have CU = CγU with γ ∈ Γ such that γ` = `i for some i.

An orientation for U gives one for CU in the following way:
Pick any null line `′ = Qu′ as above such that ` and `′ span a hyperbolic plane

whose orthogonal complement in V we denote by W . Recall that the forward pointing
vectors (see (2.5)) give an orientation for ` and `′ respectively. The orientation of U
induces one for U ′ = U ∩W by requiring that the orientation of ` followed by the one
of U ′ gives the orientation for U . BU is isomorphic to the orthogonal complement
of U in `0 ⊥ W , and we require that the orientation of ` followed by the ones of
BU = TZ(BU), U ′ and finally of `′0 gives the orientation of V .

A fixed orientation for U defines a sign character ε(X) for X a rational n-frame
with spanQ(X) = U , by setting ε(X) = 1 if X defines the same orientation on U and
ε(X) = −1 otherwise. So CX = ε(X)CU .

Remark 3.1. When working with coordinates for B adopted to U (see Section 2)
one obtains a different orientation for CU which differs from the given one by a factor
of (−1)(n−1)(p−n).

The construction of a composite cycle in this situation is more complicated:
Let β ∈ Symn(Q) positive semidefinite and of rank n− 1. We define

(3.6) Ωs
β = {X ∈ V n :

1

2
(X,X) = β and rank(X) = n},

the ’singular’ part of the hyperboloid Ωβ. Since β is singular, the radical R(X) of
the span of X ∈ Ωs

β is nonzero, i.e., R(X) = ` = `X for some rational isotropic line `.
For such a line, we define

(3.7) Ωβ,` = {X ∈ V (Q) : (X,X) = β and R(X) = `} ⊂ `⊥.

We then have

(3.8) Ωs
β =

r∐
j=0

∐
γ∈Γj\Γ

Ωβ,γ−1`j ,

where `0, · · · , `r are the cusp representatives of the Γ-orbits of rational isotropic lines.
We also write Ωβ,j for Ωβ,`j and

(3.9) Lβ,j = Ωβ,j ∩ (Ln + h).

Lemma 3.2. Let ` be a rational isotropic line. There is a finite number of rational
n-dimensional subspaces U1, · · · , Ua of `⊥ such that

(3.10) {U1, · · · , Ua} = {span(X) : X ∈ Ωβ,` ∩ (Ln + h)}.
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Proof. Indeed, we consider the quadratic space `⊥/` which is positive definite. Then
there are only finitely many X̄ ∈ (Ωβ,` ∩ (Ln + h))/` such that 1

2
(X̄, X̄) = β. Pulling

back to `⊥ then gives the lemma. �

For each cusp `j, find a collection Uij, i = 1, . . . , aj, of n-dimensional subspaces of
`⊥j as in the lemma. We will write

(3.11) Ωβ,i,j = {X ∈ Ωβ,j : span(X) = Uij} and Lβ,i,j = Ωβ,i,j ∩ (Ln + h),

so that

(3.12) Ωβ,j =

aj∐
i=1

Ωβ,i,j and Lβ,j =

aj∐
i=1

Lβ,i,j.

Lemma 3.3. The action of Γj on Ωβ,j induces a free action of ΓUij\Γj on Ωβ,i,j.
Here ΓUij = NUij ∩ Γj.

Proof. We show that the action of Γj on Ωβ,j carries Ωβ,i,j into itself and that the
induced action of ΓUij is trivial.

Indeed, an element γ ∈ Γj operates on an element x ∈ `j + W = `⊥j by adding a

multiple of uj to x. Thus γ leaves stable any subspace of (`j)
⊥ containing `j, whence

γ leaves Ωβ,i,j stable. Consequently, Γj leaves Ωβ,i,j stable. Also, ΓUij acts trivially
on Uij whence it acts trivially on Ωβ,i,j.

Finally, if γ ∈ Γj satisfies γX = X, then, since X spans Uij, necessarily γ|Uij =
1. �

Let Cβ,i,j be a set of coset representatives of this action on Lβ,i,j, i.e.,

(3.13) Cβ,i,j =
(
Γj/ΓUij

)
\ (Ωβ,i,j ∩ (Ln + h)) .

We will see below that Cβ,i,j is infinite. It is clear that the collection of the Cβ,i,j
provides a set of representatives for Γ\Ωβ ∩ (Ln + h).

Pick a ∈ Qn in the radical of β. Then for all X ∈ Ωs
β,

(3.14) X · a ∈ `X = QuX ,

with uX ∈ `X as in (2.5). We can take a nonzero and primitive in Zn. With this
condition, X determines a up to ±1, and we write X · a = ν(X)uX , where ν(X) is
determined up to a sign. Following [10] we call X reduced if with such a choice of a
we have

(3.15) X · a = ν(X)uX

with ν(X) ∈ [0, 1). Note that if X is reduced so is γX with γ ∈ Γ and ν(X) = ν(γX).
We write Ωred

β for the set of reduced elements in Ωs
β.

Lemma 3.4. Γ acts with finitely many orbits on the reduced elements in Γ\Ωs
β ∩

(Ln + h), and Credβ,i,j := Cβ,i,j ∩ Ωred
β forms a set of representatives.

Proof. It is enough to show that for each pair i, j, Credβ,i,j consists of only finitely many
elements. We write Cβ,Uij ,h for Cβ,i,j.
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Choose m ∈ SLn(Z) such that me0 = a, where e0 = t(1, 0, · · · , 0). We put β0 =
tmβm and k = hm. Then right multiplication by m gives a bijection from Cβ,Uij ,h to
Cβ0,Uij ,k.

As the vector e0 is a primitive integral vector in the radical of β0, we have

(3.16) β0 =

(
0 0
0 β′0

)
.

where β′0 is a positive definite (n− 1) by (n− 1) matrix. We write Uij = `j ⊥ U ′ with
U ′ positive definite. Picking an appropriate basis for U ′ we can assume that the n by
n matrix g(Y ) for Y ∈ Cβ0,Uij ,k is of the form

(3.17) g(Y ) =

(
y0

0 Y ′1

)
=

(
y01 y′0
0 Y ′1

)
,

where y0 = (y01, y
′
0) is a row vector of size n and Y ′1 is an invertible (n− 1) by (n− 1)

matrix. Similarly, the congruence condition k is of the form

(3.18) g(k) =

(
k01 k′0
0 k′1

)
.

Also, since y1 ≡ k1 mod Zu0 we have y01 ≡ k01 mod Z. Since β′0 is positive definite,
there are only finitely many Y ′1 which represent β′0. We have

(3.19) g(n(u′)Y ) =

(
y01 y′0 + 2(u′, Y ′1)
0 Y ′1

)
for n(u′) ∈ Γj. Hence there are only finitely many y′0, but y01 runs through the set
{k01 + n : n ∈ Z, n 6= −k01}. Assuming k01 ∈ [0, 1) we observe ν(Y ) = k01 for Y
reduced. This proves the assertion.

�

The proof of the lemma shows that the representatives of Cβ,i,j come in natural

Z-classes: If X ∈ Ωβ,` and X · a ∈ `X as above, then {X̃ = X + uX
ta′ : k ∈ Z} with

a′ ∈ Zn and ta′a = 1 defines the Z-class. From this we see that each class contains
exactly two reduced frames. If X is reduced with respect to a, then X̃ = X − uXta′
with a′ ∈ Zn and ta′a = 1 is reduced with respect to −a. Moreover, ν(X̃) = 1−ν(X).

Recall that the first periodic Bernoulli polynomial is defined by

(3.20) B1(α) =

{
α− 1

2
if α ∈ (0, 1)

0 if α = 0.

We readily check

(3.21) B1(ν(X))ε(X) = B1(ν(X̃))ε(X̃).

We are finally ready to define the singular weighted composite cycle Cs
β by

(3.22) Cs
β =

∑
X∈Γ\Ωredβ ∩(Ln+h)

1

2
B1(ν(X))CX .
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Remark 3.5. We could also define for a complex parameter s the cycle

(3.23) Cβ,s =
1

2

∑
X∈Γ\Ωβ∩(Ln+h)

|ν(X)|−sCX .

Then the arguments of the previous lemma show that Cβ,s converges for Re(s) > 1
and has a meromorphic continuation to the whole complex plane. For the value at
s = 0 we have

(3.24) Cβ,0 = Cs
β.

(see also the proof of Prop. 6.7.)

4. A Cohomology Class for the Weil Representation

Recall that the metaplectic cover G′ = Mp(n,R) of the symplectic group Sp(n,R)
is a central group extension

(4.1) 1 −→ C1 −→Mp(n,R) −→ Sp(n,R) −→ 1

of Sp(n,R). Here C1 = {z ∈ C : |z| = 1}. We fix a splitting Mp(n,R) = Sp(n,R)×C1

and denote by K ′ ⊂ Mp(n,R) the inverse image of the standard maximal compact
subgroup

(4.2)

{(
a b
−b a

)
: a+ ib ∈ U(n)

}
of Sp(n,R). Then K ′ admits a character det1/2; i.e., its square descends to the
determinant character of U(n).
G × G′ acts on the Schwartz space S(V (R)n) via (the restriction of) the Weil

representation ω = ωV (R) associated to the additive character t 7−→ e(t) := exp(2πit),
see for example [16]. Recall that the action of G′ on ψ ∈ S(V (R)n) is characterized
by the formulae

(4.3) ω
((

a 0
0 ta−1

))
ψ(X) = (det a)m/2ψ(Xa)

for a ∈ GL+
n (R);

(4.4) ω (( 1 b
0 1 ))ψ(X) = eπitr(b(X,X))ψ(X)

for b ∈ Symn(R);

(4.5) ω (( 0 1
−1 0 ))ψ(X) = γψ̂(X),

where ψ̂ is the Fourier transform of ψ and γ an eighth root of unity.
The central C1 acts by

(4.6) ω((1, t))ψ =

{
tψ if m is odd

ψ if m is even

for all t ∈ C1.
The group G acts on S(V (R)n) via

(4.7) ω(g)ψ(X) = ψ(g−1X),

which commutes with the action G′.
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For Z ∈ B, we define the corresponding Gaussian by

(4.8) ϕ0(X,Z) = exp(−πtr(X,X)Z)

and put ϕ0(X) = ϕ0(X,Z0). Note that ϕ0(X,Z) is G-invariant; i.e.,

(4.9) ϕ0(gX, gZ) = ϕ0(X,Z).

The space of differential n-forms on B is

(4.10) An(B) '

[
C∞(G)⊗

n∧
(p∗)

]K
,

where the isomorphism is given by evaluating at Z0.
The main result of [11] (cf. also [14]), specialized to our situation, is the construc-

tion of a certain differential n-form of B with values in the Schwartz space S(V (R)n).

Theorem 4.1 ([11]). For each n with 0 ≤ n ≤ p, there is a nonzero Schwartz form

(4.11) ϕn ∈ [S(V (R)n)⊗An(B)]G '

[
S(V (R))n ⊗

n∧
(p∗)

]K
,

such that

(i)

dϕn = 0;

i.e., for each X ∈ V (R)n, ϕn(X) is a closed n-form on B which is GX-
invariant:

g∗ϕn(X) = ϕn(X)

for g ∈ GX , the stabilizer of X in G.
(ii) The forms are compatible with the wedge product:

ϕn1 ∧ ϕn2 = ϕn1+n2 ,

where ϕn = 0 for n > p.
(iii) Assume U = U(X) for a linear independent, positive definite n-frame X in

V (R). Then a Poincaré dual of CU = ΓU\BU is given byeπ(X,X)
∑

γ∈ΓU\Γ

γ∗ϕn(X)

 .
In [11, 12] Poincaré dual form means the following: Let C ⊂ M = Γ\B be a cycle

of dimension n. The η is a Poincaré dual form of C if

(4.12)

∫
C

ω =

∫
M

ω ∧ η

holds for all compactly supported (or rapidly decreasing) closed n-forms ω.

We now give some explicit formulae for the forms ϕn ∈ [S(V (R))n ⊗
∧n(p∗)]

K
.

Via the basis {e1, · · · , ep} for Z⊥0 we identify p with Rp. Then ωi becomes the
functional on p which picks out the i-th coordinate. For X = (x1, ..., xn) ∈ V (R)n '
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Mm,n(R) (w.r.t. the basis {e1, . . . , ep+1}), m = p + 1, and for 1 ≤ s ≤ n, we then
define the 1-form

(4.13) ω(s,X) =

p∑
i=1

xisωi.

Note that ω(s,X) only depends on the s-th column vector xs ofX: ω(s,X) = ω(s, xs).
We set

2−n/2ϕn(X) =

(
n∧
s=1

ω(s,X)

)
· ϕ0(X)(4.14)

= ϕ1(x1) ∧ · · · ∧ ϕ1(xn)(4.15)

with ϕ0(X) = exp(−πtr(X,X)0), as before.
Note that this differs from the corresponding quantity in [11] by a factor of 2n/2.
We easily see

(4.16) ϕn(X) = 2n/2
∑

1≤j1<···<jn≤p

Pj1,··· ,jn(X) exp(−πtr(X,X)0) ⊗ ωj1 ∧ · · · ∧ ωjn ,

where Pj1···jn(X) is the determinant of the n by n matrix obtained from X by re-

moving all rows except the j1, · · · , jn. Occasionally we will write X̂ for this matrix,
suppressing the coordinates. We write ϕj1,··· ,jn(X) = Pj1,··· ,jn(X) exp(−πtr(X,X)0).

Then it is easy to see that we have

(4.17) ϕn(X)(W ) = 2n/2 det(X,W ) exp(−πtr(X,X)0)

for W ∈ TZ0(B)n ' pn ' (Z⊥0 )
n
. Lemma 2.1 gives

Corollary 4.2.

σ∗ϕn(X) = 2n/2
∑

1≤j1<···<jn≤p

Pj1,··· ,jn(X)e−π(X,X)0 ⊗ νj1 ∧ · · · ∧ νjn .

We write ϕn(X,Z) for the corresponding n-form on B; for g ∈ G0(R), we have per
construction

(4.18) ϕn(gX, gZ) = ϕn(X,Z),

which also implies Th. 4.1 (i).

Fundamental for the relationship to modular forms is

Theorem 4.3 ([11, 12]).
ϕn is an eigenvector of the maximal compact K ′ ⊂ Mp(n,R) under the action of

the Weil representation. We have

ω(k′)ϕn = det(k′)m/2ϕn

for k′ ∈ K ′.
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We denote by Lm the G′-homogeneous line bundle over G′/K ′ to the character

det−m/2 of K ′. Then the previous theorem can reformulated as

ϕn ∈ [Lm ⊗ S(V (R)n)⊗An(B)]G×G
′

(4.19)

'

[
Cχm ⊗ S(V (R)n)⊗

n∧
(p∗)

]K×K′
,(4.20)

where Cχm is the one-dimensional module on which K ′ acts via the character det−m/2.
For τ = u + iv ∈ Hn = {τ ∈ Symn(C) : Im(τ) > 0} ' G′/K ′, the Siegel space of

genus n, we define in the usual way

(4.21) ϕn(τ,X, Z) = det(v)−m/4ω(g′τ )ϕn(X,Z).

Here g′τ ∈ Spn(R) is a standard element carrying the base point iIn ∈ Hn to τ ; i.e.,

(4.22) g′τ =

(
v

1
2 v−

1
2u

0 v−
1
2

)
=

(
1 u
0 1

)(
v

1
2 0

0 v−
1
2

)
.

This is well defined, and we obtain

Proposition 4.4.

ϕn(τ,X, Z)(W ) = 2n/2 det(v)1/2 det(X,W )eπitr(X,X)τ,Z

for W ∈ (TZ(B))n '
(
Z⊥
)n

and with (X,X)τ,Z = u(X,X) + iv(X,X)Z.

For a congruence condition h ∈ (L#)n, we define the theta series θ(τ) with values
in the differential n-forms of B by

(4.23) θ(τ, Z) =
∑

X∈(Ln+h)

ϕn(τ,X, Z).

By the standard machinery of the theta correspondence (Poisson summation for-
mula), we get

Theorem 4.5 ([11, 12]).
θ(τ, Z) is a non-holomorphic Siegel modular form of weight m/2 with values in the

Γ-invariant differential forms of B for some suitable congruence subgroup of Sp(n,Z).

In [14] it was shown that ∂̄ϕn (with respect to the symplectic variable τ ∈ H) is
exact in the orthogonal variable Z ∈ B; i.e., there exists

(4.24) ψn−1 ∈ [Lm ⊗ S(V (R))n ⊗An−1(B)⊗A0,1(Hn)]G×G
′

such that

(4.25) ∂̄ϕn = dψn−1.

Defining the analogous theta series

(4.26) Ξ(τ, Z) = θψ(τ, Z) =
∑

X∈(Ln+h)

ψ(τ,X, Z)
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we obtain

(4.27) ∂̄ θ(τ, Z) = d Ξ(τ, Z).

We now give a concrete formula for ψn−1. Consider the double complex

(4.28) [Lm ⊗ S(V (R))n ⊗Ai(B)⊗A0,j(Hn)]G×G
′

with maps d, ∂̄. The Lie-algebra version of this complex is the following. Let g′ =
k′ + p′ be the complexified Cartan decomposition of spn. We can identify p′ with
the complex tangent space of Hn ' G′/K ′ at the base point i1n, and the Harish-
Chandra decomposition p′ = p+⊕p− gives the splitting of p′ into the holomorphic and
antiholomorphic tangent spaces. We let νjk, 1 ≤ j ≤ k ≤ n be dual to the standard
basis of p− ⊂ Symn(C). Evaluation at the base points gives an isomorphism of the
above complex with

(4.29) Ci,j = [Cχm ⊗ S(V (R))n ⊗
i∧

p∗ ⊗
j∧

p∗−]K×K
′
.

We define d, ∂̄ on Ci,j via transport of structure, for explicit formulae see [14]. Note
that ϕn ∈ Cn,0 and ψn−1 ∈ Cn−1,1.

We put (in coordinates for {ei})

(4.30) Ajk(X) = (−1)k−1xm,je
− 1

2
π(xk,xk)0ϕ1(x1) ∧ · · · ∧ ϕ̂1(xk) ∧ · · · ∧ ϕ1(xn),

wherêover a term denotes that this term is omitted in the product. We have

(4.31) Ajk = (−1)k−1
∑

1≤α1<···αn−1≤p

xmj P
(k)
α1,··· ,αn−1

(X)ϕ0(X) ⊗ ωα1 ∧ · · · ∧ ωαn−1

Here P
(k)
α1,··· ,αn−1(X) is the following polynomial. Let X(k) denote the m by (n −

1) submatrix of X obtained by deleting the k-th column. Then P
(k)
α1,··· ,αn−1(X) =

P
(k)
α1,··· ,αn−1(X

(k)) is the minor obtained from X(k) using the rows α1, · · · , αn−1.
We now define

(4.32) ψn−1 = i2n/2

[ ∑
1≤j≤n

Ajj ⊗ νjjνj1 ∧ · · · ∧ νjn ; +
3

4

∑
1≤j<k≤n

(Ajk + Akj)⊗ νjk

]
.

Then

Theorem 4.6 ([14]).

∂̄ ϕn = dψn−1.

We write ψjj;α1,··· ,αn and ψjk;α1,··· ,αn for the coefficient of ωα1 ∧ · · · ∧ ωαn−1 in Ajj
and Ajk + Akj respectively.
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5. The Growth of θ(τ, Z) and Ξ(τ, Z)

In this section we prove that θ(τ, Z) extends to the Borel-Serre boundary and that
Ξ(τ, Z) is rapidly decreasing on Γ\B.

Since ϕn(X, g−1Z) = ϕn(gX,Z), it suffices to prove the required estimates on the
fixed Siegel set S′. By some standard arguments we can also assume that the lattice
L is of the form

(5.1) L = L ∩ `0 + L ∩W + L ∩ `′0.

We first consider an arbitrary n-form ϕ ∈ [S(V (R)n ⊗
∧n

p∗]
K

in the polynomial
Fock space, that is, the space of Schwartz functions of the form p(X)ϕ0(X) with p a
polynomial function on V (R)n. (In the Fock model of the Weil representation these
become polynomials on Cnm.)

We extend our basis ω1, · · · , ωn of p to a frame field V1(Z), . . . , Vp(Z). We then
have

(5.2) θϕ(τ, Z(t, b)) (Vi1(Z(t, b)), · · · , Vin(Z(t, b)))

=
∑

X∈(Ln+h)

ϕ(τ, Z0, a(t)−1n(b)−1X)(wi1 , · · · , win).

Thus the problem of estimating a form of the above type on S′ reduces to estimating
an expression of the following type

(5.3) θ(t, b, R) =
∑

X∈(Ln+h)

p
(
a(t)−1n(b)−1X

)
exp

(
−πR(a(t)−1n(b)−1X)

)
,

where p(X) is a homogeneous polynomial function on V n and R is a complex-valued
quadratic function on V n with positive definite real part. We now make some elemen-
tary observations concerning the growth of such expressions in t. We define θ∗(t, b, R)
by

(5.4) θ∗(t, b, R) =
∑

X∈(Ln+h)

∣∣p (a(t)−1n(b)−1X
)

exp
(
−πR(a(t)−1n(b)−1X)

)∣∣ .
Via V (R)n 'Mm,n(R) we think of p as a polynomial in some coordinates of V (R)n.

From now on we use coordinates yij with respect to a Witt basis, see Section 2.

Writing X =
( y1
Y ′
ym

)
we have

(5.5) a(t)−1n(b)−1X =

t−1 (y1 − 2(Y ′, b) + (b, b)ym)
Y ′ − b · ym

tym

 .

As a warm up we note

Lemma 5.1. Suppose p(yij) is in the ideal in C[yij] generated by {ymj : 1 ≤ j ≤ n},
the ideal of polynomial functions which vanish on (`⊥0 )n. Then θ∗(t, b, R) is exponen-
tially decreasing on S′.
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Proof. We may replace R by c
∑

i,j y
2
ij for a suitable constant c (since we are taking

absolute values of the terms in the sum). Under the hypothesis of the lemma the only
terms that appear in the sum have ymj(X) 6= 0 for some j. But these terms appear
in the exponential multiplied by t2, and the lemma follows. �

Remark 5.2. The forms ψn−1 and ϕn are not of this form.

We have an isomorphism

(5.6) S(V (R)n) −→ S((`0)n)⊗ S(W (R)n)⊗ S((`′0)n)

given by the partial Fourier transform operator

(5.7) F0(ϕ1 ⊗ ϕ2 ⊗ ϕ3) = ϕ̂1 ⊗ ϕ2 ⊗ ϕ3.

Here ϕ̂1 is the usual Fourier transform on (`0)n. The right hand side is sometimes
referred to as the mixed model of the Weil representation.

We will need some formulae relating the action of ω and F0 on S(V (R)n). Iden-
tifying (`0)n with MZn for some M ∈ Q we denote the Fourier transform variable
(dual to y1) by ξ ∈ Rn.

Lemma 5.3. Let (ξ, w, ym) ∈ (R)n ×W (R)n × (`′0(R))n.

(i) For n(b) ∈ N(R) with b ∈ W ,

F0(n(b)ϕ)(ξ, w, ym) = e
(
ξt(−2(b, w) + (b, b)ym)

)
F0ϕ(ξ, w − bym, ym);

(ii) For a(t) ∈ A(R),

F0(a(t)ϕ)(ξ, w, ym) = tnF0ϕ(tξ, w, tym);

(iii) For a′(v) =
(
v 0
0 tv−1

)
∈ Sp(n,R) with v ∈ GLn(R),

F0(a′(v)ϕ)(ξ, w, ym) = (det v)
m
2
−1F0ϕ(ξtv−1, wv, ymv)

(iv) For n′(u) = ( 1 u
0 1 ) ∈ Sp(n,R) with u ∈ Symn(R),

F0(n′(u)ϕ)(ξ, w, ym) = e

(
tr(u

(w,w)

2
)

)
F0ϕ(ξ +

1

2
ymu,w, ym).

Proof. This is an easy exercise which we omit. �

We introduce the following notation

a×(v)ϕ(ξ, w, ym) = ϕ(ξtv−1, wv, ymv),(5.8)

φ(b, ξ, w, ym) = e
(
ξt(−2(b, w) + (b, b)ym)

)
.(5.9)

Note |φ(b, ξ, w, ym)| = 1.
Let I ⊂ S(V n) be the ideal of Schwartz functions in the polynomial Fock space that

vanish on the linear subspace W n of V n. Note that W n is defined by the equations

(5.10) y1j = 0 and ymj = 0

for j = 1, · · · , n, i.e., I =< y1j, ymj >. We observe that if F0ϕ ∈ I then also
F0(a′(v)ϕ) and F0(n′(u)ϕ) ∈ I.
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Lemma 5.4. Suppose F0ϕ is in the ideal I. Then θ(t, b) is exponentially decreasing
on S′.

Proof. We may write

(5.11) θ(t, b) =< Θh+Ln , n(b)a(t)ϕ > .

Here Θh+Ln is the sum of Dirac deltas (placed at the points of h + Ln) and < , >
denotes the Kronecker pairing.

We write h = h1 + h′ with h1 ∈ (`0)n. Then there is a constant C such that

(5.12) F0Θh+Ln = Ce(ξth1)Θh′+Ln

by Poisson summation. Using the formulas from the previous lemma we obtain

(5.13) F0((n(b)a(t))ϕ)(ξ, w, ym) = φ(b, ξ, w, ym)F0ϕ(tξ, w, tym).

Hence

(5.14) θ(t, b) = Ctn
∑

ξ∈M−1Zn
(w,ym)∈W×(`′0)n+h′

φ(b, ξ, w, ym)e(ξ th1)F0ϕ(tξ, w, tym).

The lemma now follows from an argument analogous to that of Lemma 5.1. �

Note however that one cannot conclude from the lemma that θ∗(t, b) is rapidly
decreasing.

Lemma 5.5. Suppose p(yij) is divisible by y1j for some j but no higher power of y1j.
Then F0ϕ is in the ideal I. Moreover, for every v ∈ GLn(R) and u ∈ Symn(R) the
function F0(n′(u)a′(v)ϕ) is in the ideal I.

Proof. The first statement is clear for we may write

(5.15) ϕ(X) = y1je
−πy21jψ(X).

where ψ(X) does not involve y1j. Now taking F0 does not change the function since

y1je
−πy21j is its own Fourier transform (up to the constant −i).

The second statement follows from the first one, the formulae (iii) and (iv) of
Lemma 5.3 and the observation that if Fϕ ∈ I, then a×(v)Fϕ ∈ I and

e
(
tr(u (w,w)

2
)
)
F0ϕ(ξ + 1

2
ymu,w, ym) ∈ I. �

Corollary 5.6. If ϕ satisfies the hypothesis of the lemma, then for every τ ∈ Hn,
θ(t, b, τ) decays exponentially on S′, where

(5.16) θ(t, b, τ) =
∑

X∈(Ln+h)

p(Xv
1
2 )e−π(X,X)τ,Z(t,b) .

We now check that the form ψn−1 satisfies the hypothesis of the previous lemma.
It is enough to do this for the individual components ψjk;α1,··· ,αn−1

Lemma 5.7.

(i) F0ψjj;α1,··· ,αn−1 ∈ I for all 1 ≤ α1 < · · · < αn−1 ≤ p
(ii) F0ψjk;α1,··· ,αn−1 ∈ I for all 1 ≤ α1 < · · · < αn−1 ≤ p
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Proof. (i) follows immediately from Lemma 5.5 and the explicit formulae for ψn−1:
We have

ψjj;α1,··· ,αn−1(X) = xmjP
(j)
α1,··· ,αn−1

(X)ϕ0(X)(5.17)

= (y1j − ymj)P (j)
α1,··· ,αn−1

(X)ϕ0(X).(5.18)

Now observe that P
(j)
α1,··· ,αn−1(X) is a polynomial which does not involve y1j.

(ii) is more complicated. By an argument similar to the previous one we find that
F0ψjk;α1,··· ,αn−1 ∈ I provided α1 6= 1. However, for α1 = 1 it is no longer true. We
have, assuming j < k,

(5.19) ψjk;α1,··· ,αn−1 =
[
(−1)k−1xmjP

(k)
1,··· ,αn−1

(X) + (−1)j−1xmkP
(j)
1,··· ,αn−1

(X)
]
ϕ0(X).

We expand P
(k)
1,··· ,αn−1

(X) by the first row and obtain

(5.20) P
(k)
1,··· ,αn−1

(X) = (−1)j−1x1jP
(j,k)
α2,··· ,αn−1

(X) +Rk,

where Rk is a polynomial not involving x1j. Similarly,

(5.21) P
(j)
1,··· ,αn−1

(X) = (−1)k−2x1kP
(j,k)
α2,··· ,αn−1

(X) +Rj.

We obtain

(5.22) ψjk(X) ≡ 2(−1)j+k(y2
1j − y2

1k)P
(j,k)
α2,··· ,αn−1

(X)ϕ0(X) mod F−1
0 I.

Taking F0 now shows that the right hand side is in F−1
0 I. This boils down to the fact

that the Fourier transform of x2e−πx
2

is ( 1
2π
− x2)e−πx

2
. �

We conclude

Theorem 5.8.
Ξ(τ, Z) is rapidly decreasing.

We now determine the growth of θ(τ, Z) = θϕn(τ, Z) on S′. Recall

(5.23) ϕα1,··· ,αn(X) = 2n/2Pα1,··· ,αn(X)ϕ0(X)

and put θJ(τ, Z) =
∑

X∈Ln+h ϕα1,··· ,αn(X) with J = {α1, · · · , αn}.
We write

(5.24) Ln + h = (`0)n + h0) + (Ln ∩W n + hW ) + (`′0)n + h′0)

according to the decomposition (5.1).
The following lemma gives the growth of the components θJ(τ, Z) of θ(τ, Z).

Lemma 5.9.

(i) ϕα1,··· ,αn ∈ F−1
0 I if and only if α1 = 1.

(ii) If α1 = 1, then θJ(τ, Z) has exponential decay on S′.

(iii) If α1 6= 1, then θJ(τ, Z) =

{
O(tn) if h′0 ∈ (`′0)n

O(tne−Ct
2
) if h′0 /∈ (`′0)n.

as t→∞.
(iv) θ∗J(τ, Z) = O(tn) if h′0 ∈ (`′0)n.
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Proof. For (i) develop Pα1,··· ,αn(X) after the first row and proceed as in the proof of
Lemma 5.7. (ii) follows from (i) and Lemma 5.4. For (iii), we first write

ϕα1,··· ,αn(a(t)−1n(b)−1X) = 2n/2Pα1,··· ,αn(X)e−2πt−2(
P
y21k)−πtr(X′,X′)−2πt2(

P
y2mk) with

n(b)−1X = (y1, X
′, ym). The assertion now follows from

∑
k∈Z+h e

−π(k/t)2 = O(t)
as t → ∞, which can be most easily seen by taking the Fourier transform, and∑

k∈Z+h′ e
−π(kt)2 = O(e−Ct

2
) if and only if h′ /∈ Z. This also implies (iv) in the case of

α1 6= 1. If α1 = 1, then (iv) reduces to
∑

k∈Z+h |
k
t
|e−π(k/t)2 = O(t), which is an easy

calculus exercise. �

Note that the condition h′0 ∈ (`′0)n certainly is equivalent to h ∈ (`⊥0 )n. Following
([10]) we call the congruence condition h ∈ (L#)n non-singular if for all frames
X ∈ h+ Ln of rank n, the radical R(X) is empty. Otherwise we call h singular.

Near the cusp given by `0 we can change the upper-half space coordinates (t, b) to
(s, b) with s = 1/t. Then the restriction of a differential form on to the boundary
component coming from `0 is given by setting s = 0 (and corresponds to t→∞).

Theorem 5.10. (Theorem 1.1)

(i) θ(τ) extends to the Borel-Serre boundary of M ; i.e., defines a closed differen-
tial form on M .

(ii) If h is non-singular or n = p, then θ(τ) is rapidly decreasing on M ; hence
θ(τ)|∂M = 0.

(iii) If h is singular, then the restriction of θϕ to the component of the Borel-Serre
boundary eP coming from the parabolic P is the restriction of the theta series
to the positive definite subspace W of V . More precisely, under the assumption
(5.24),

θϕ|eP (τ, Z(b)) =


∑

X∈Ln∩(Wn+hW )

ϕ(τ,X, Z(b)) if h ∈ (`⊥0 )n

0 if h /∈ (`⊥0 )n.

Here

ϕ(τ,X, Z(b)) =
∑

2≤α1<···<αn≤p

Pα1,··· ,αn(X) exp(−πtr(X,X)τ)dbα1 ∧ · · · ∧ dbαn

for X ∈ W n.

Proof. Everything follows from Corollary 4.2, Lemma 2.1, Lemma 5.9 and

(5.25) lim
t→∞

t−nθα1,··· ,αn(τ, Z) = Pα1,··· ,αn(X) exp(−πtr(X,X)τ)dbα1 ∧ · · · ∧ dbαn ,

which is seen by taking the operator F0, Lemma 5.3 and Poisson summation. �

Remark 5.11. Theorem 5.10 (iii) also shows a nice functorial property of the Weil
representation. We have(

ωV (R)(g
′(τ)θϕ)

)
|eP (Z(b)) = ωW (R)(g

′(τ)) (θϕ|W ) (Z(b)),

where ωW (R) is the Weil representation attached to the positive definite space W (R)
and θϕ|W is the theta series restricted to W .
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By Theorem 5.10 we can now define for a closed differential (p− n)-form η on M ,

(5.26) Λ(η)(τ) =

∫
M

η(Z) ∧ θ(τ, Z).

This extends the lift considered in [14] to forms which do not vanish at the boundary.

Theorem 5.12. (Theorem 1.2)
Λ(η)(τ) is a holomorphic Siegel modular form of weight m/2.

Proof. This will now follow from Theorem 5.8 and the following calculation, see [14]:

(5.27) ∂̄Λ(η)(τ) = ∂̄

∫
M

η(Z) ∧ θϕ(τ, Z) =

∫
M

η(Z) ∧ θ∂̄ϕ(τ, Z)

=

∫
M

η(Z) ∧ θdψ(τ, Z) =

∫
M

d(η(Z) ∧ θψ(τ, Z)) = 0.

The last equation is Stokes’ Theorem. Here we need θψ rapidly decreasing. �

Remark 5.13. In the analogous situation of locally symmetric spaces associated to
orthogonal groups of arbitrary signature θψ is not rapidly decreasing and the above
argument breaks down. The theta integral is non-holomorphic in general, see [6]. In
[14] it was assumed that η was rapidly decreasing and the above argument showed
the holomorphicity of the theta integral.

6. The Singular Fourier Coefficients

In this section we compute the singular Fourier coefficients of the theta integral
Λ(η)(τ).

For the β-th Fourier coefficient, we have

(6.1) aβ (η) =

∫
M

η ∧
∑

X∈Ωβ∩(Ln+h)

ϕ(iv, Z,X)e−2πtr(βv).

First note that Prop. 4.4 implies that only for rank (X) = n we have ϕ(X) 6= 0.
Therefore aβ = 0 unless β = 1

2
(X,X) is singular and positive semidefinite with

rank(X) = n (or β positive definite).

Theorem 6.1. (Theorem 1.4) Assume that β is positive semi-definite of rank n− 1.
Then

aβ(η) = (−1)n
∫
Cβ

η.
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Proof. With the notation of Section 3 we have

e2πtr(βv)aβ =

∫
Γ\B

η ∧
∑

X∈Ωsβ∩(Ln+h)

ϕ(iv, Z,X)(6.2)

=

∫
Γ\B

η ∧
r∑
j=0

∑
γ∈Γj\Γ

∑
X∈Lβ,j

γ∗ϕ(iv, Z,X)(6.3)

=
r∑
j=0

∫
Γ\B

η ∧
∑

γ∈Γj\Γ

∑
X∈Lβ,j

γ∗ϕ(iv, Z,X)(6.4)

=
r∑
j=0

aj∑
i=1

∫
Γ\B

η ∧
∑

γ∈Γj\Γ

∑
X∈Lβ,i,j

γ∗ϕ(iv, Z,X).(6.5)

Proposition 6.2.∫
Γ\B

η ∧
∑

γ∈Γj\Γ

∑
X∈Lβ,i,j

γ∗ϕ(iv, Z,X) =

∫
Γj\B

η ∧
∑

X∈Lβ,i,j

ϕ(iv, Z,X).

Proof. The considerations in Section 5 imply that it is enough to show that∑
X∈Lβ,i,j ϕ(iv, a(t)−1n(b)−1X) is rapidly decreasing for t → ∞ and t → 0. Tak-

ing m ∈ SLn(Z) as in the proof of Lemma 3.4 we find via Prop. 4.4 that

(6.6)
∑

X∈Lβ,Uij ,h

ϕ(iv, a(t)−1n(b)−1X) =
∑

Y ∈Lβ0,Uij ,k

ϕ(iv′, a(t)−1n(b)−1Y )

with v′ = tm−1vm−1 and β0, k = hm and β as in (3.16). But now Lemma 6.4 and
Lemma 5.9(i) show that we have ϕ|Lβ0,Uij ,k ∈ F

−1
0 I (in the notation of Section 5).

As in (3.17), Y ∈ Lβ0,Uij ,k is of the form
( y0

0 Y ′1

)
with y0 ∈ (`0)n and finitely many

possibilities for Y ′1 . So we can apply F0 to the sum over Lβ0,Ui,j ,k and Lemma 5.5
gives the rapid decay as t→∞. The decay as t→ 0 is clear. �

Remark 6.3. In [10] and [14] unfolding was not attempted in the above situation.
This led to considerable complications. In [10], the case n = p, Kudla introduced
a wave packet attached to the standard Eisenstein series for O(p, 1) to compute the
integral. The method employed in the following is conceptually much simpler (even
though the actual calculations are quite similar). Moreover, it should be immediately
available in the more general situation of [14] for not rapidly decreasing η.

We define a smooth differential n-form θi,j(Z) on Γj\B by

(6.7) θi,j(Z) =
∑

X∈Lβ,i,j

ϕ(Z,X).

and put

(6.8) θ(η, β, Uij) =

∫
Γj\B

η ∧ θi,j(Z).
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Hence

(6.9) e2πtr(βv)aβ =
r∑
j=0

aj∑
i=1

θ(η, β, Uij).

We also define a function Φ(X,Z) via

(6.10) η ∧ ϕ(Z,X) = Φ(X,Z)dµ,

where dµ = t−pdt ∧ db1 ∧ · · · ∧ dbp−1 is the Riemannian volume form, and set

(6.11) Φi,j(Z) =
∑

X∈Ωβ,i,j

Φ(Z,X).

Picking the standard fundamental domain for Γj\B we obtain

(6.12) θ(η, β, Uij) = (−1)p−1

∫ ∞
0

(∫
Rp−1/Λj

Φi,j(Z(t, b))db

)
t−pdt.

Recall (2.29) that the lattice Λj ⊂ W ' Nj ' Rp−1 is given by Λj ' Γj. Here and
from now on Nj = Nj(R) and W = W (R). We denote the torus Λj\W by Tj.

We write Ai,j(t) for the inner integral of (6.12). We have

Ai,j(t) =

∫
Γj\Nj

Φi,j(Z(t, b))db(6.13)

=

∫
Γj\Nj

∑
X∈Lβ,i,j

Φ(Z(t, b), X)db(6.14)

=
∑

X∈Lβ,i,j

∫
Γj\Nj

Φ(Z(t, b), X)db.(6.15)

We also get a splitting

(6.16) W = Uij ∩W + (U⊥ij ∩W ).

Now note that the right hand side of (6.15) is multiplicative under finite coverings!
We pass to a subgroup Γ̃j ' Λ̃j of finite index κ in Γj given by

(6.17) Λ̃j = (Uij ∩ Λ̃j) + (U⊥ij ∩ Λ̃j) =: Λ′ + Λ′′

and obtain a degree κ covering

(6.18) T̃j = T′ × TUij → Tj

with T′ = Λ′\Uij and TUij = Λ′′\U⊥ij . We obtain

(6.19) κAi,j(t) =
∑

X∈Lβ,i,j

∫
T′×TUij

Φ(Z(t, b), X)db.

We will use the horospherical coordinates adopted to Uij. We may choose a Witt
basis u,w1, . . . , wp−1, u

′ with u,w1, . . . , wn−1 ∈ Uij. Then the horospherical coordi-
nates (t, b1, · · · , bp−1) are adopted to Uij. The decomposition

(6.20) Z(t, b) = Z(t, b′, b′′)
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corresponds to the splitting (6.16). We write η in terms of these coordinates as

(6.21) η(t, b) = f(t, b)dbn ∧ · · · ∧ dbp−1 + η′(t, b),

where η′(t, b) is in the ideal of forms on Γj\B generated by {dt, db1, · · · , dbn−1}.
For ϕn(Z(t, b′, b′′), X), we have

Lemma 6.4. Suppose U := span(X) = span{u0, w1, · · · , wn−1}. Then

ϕn(Z(t, b′, b′′), X) = 2n/2
1

2
det g(X)e−π(X,X)Z(t,b′,0) t−n−1dt ∧ db1 ∧ · · · ∧ dbn−1,

where g(X) is the matrix expressing the basis X for U in terms of the basis
{u0, w1, · · · , wn−1} for U ; i.e.,

(x1, · · · , xn) = (u0, w1, · · · , wn−1)g(X).

Proof. We have X̂ = (xij) with

(6.22) xij = (xj, ei) for 1 ≤ i ≤ p and xp+1,j = −(xj, ep+1).

Moreover u0 = 1
2
(e1 + ep+1). But by assumption (xj, u0) = 0 for all j and (xj, ei) =

0 for i ≥ n. It follows immediately that the only vanishing Plücker coordinate
Pj1,··· ,jn(X), which is non-zero, is P1,2,··· ,n, and this has value 1

2
det g(X).

We next observe

(6.23) ϕn(Z(t, b), X) = ϕn(Z0, a(t)−1n(b)−1X).

Now we have (using the previous formulas)

det g
(
a(t)−1n(b)−1X

)
= t−1 det g(X),(6.24)

exp(−π(X,X)Z(t,b)) = exp(−π(X,X)Z(t,b′,0)),(6.25)

and

ν1 ∧ · · · ∧ vn = t−ndt ∧ db1 ∧ · · · ∧ dbn−1.(6.26)

The lemma now follows from Corollary 4.2
�

Writing h(X, t, b′) = det(v)1/22n/2 1
2

det g(X)t−1ϕ0(iv, a(t)−1n(b′)−1X), Lemma 6.4
and (6.21) give

η ∧ ϕ(iv, Z(t, b′, b′′)) = (−1)(p−n)nt−nh(X, t, b′)f(t, b′, b′′)dt ∧ db1 ∧ · · · ∧ dbp−1

(6.27)

and

Φ(X,Z(t, b′, b′′)) = (−1)(p−n)ntp−nh(X, t, b′)f(t, b′, b′′).(6.28)

Thus the inner integral in (6.12) is given by

(6.29) κAi,j(t) = (−1)(p−n)ntp−n
∑

X∈Lβ,i,j

∫
T′
h(X, t, b′)

(∫
TUij

f(t, b′, b′′)db′′

)
db′.
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But the inner integral is equal to the period of the differential form η over the closed
cycle CUij(t, b

′) ⊂ Γj\B given by

(6.30) CUij(t, b
′) = (−1)(n−1)(p−n)n(b′)a(t)TUij .

(For the sign, see Remark 3.1). Since η is closed, the period is independent of b′ and
t, and we obtain

(6.31) κAi,j(t) = 2n/2 det(v)
1
2 (−1)p−ntp−n−1

(∫
CUij

η

)

×
∑

X∈Lβ,i,j

det g(X)

∫
T′
ϕ0(iv, a(t)−1n(b′)−1X)db′.

We now unfold

(6.32) I =
∑

X∈Lβ,i,j

∫
T′

det g(X)ϕ0(iv, a(t)−1n(b′)−1X)db′.

We observe T′ ' T̃j/TUij → Tj/TUij '
N/NUij
Γj/ΓUij

is a covering of degree κ.

We let D′′ be a fundamental domain for Γj/ΓUij in N/NUij . By Lemma 3.3 we have

I = κ
∑

X∈Cβ,i,j

det g(X)
∑

γ∈Γj/ΓUij

∫
D′′
ϕ0(a(t)−1n(b)−1γ−1X)db(6.33)

= κ
∑

X∈Cβ,i,j

det g(X)

∫
N/NUij

ϕ0(a(t)−1n(b)−1X)db.(6.34)

So we have proved

Proposition 6.5.

Ai,j(t) = 2n/2 det(v)
1
2 (−1)(p−n)tp−n−1

(∫
CUij

η

)

×
∑

X∈Cβ,i,j

det g(X)

∫
N ′
ϕ0(iv, a(t)−1n(b′)−1X)db′.

For the integral, we write

(6.35) I(t,X) =

∫
N ′

exp(−πtr(X,X)iv,Z(t,b′))db
′,

and it is not hard to see ([10] Lemma 5.3)

Lemma 6.6.

I(t,X) = 2−(n−1)/2tn−1e(
1

2
tr(iβv))(det v)−

1
2 | det g(X)|−1ξ−

1
2 exp(−π

2
t−2ξ−1),

where

ξ = ξ(X) =
det v[tg1(X)]

det v det g(X)2
.
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Here g(X) =
(
g0(X)
g1(X)

)
, where g0(X) is the first row and g1(X) an (n−1) by n matrix.

We are now ready to compute θ(η, β, Uij). We have

(6.36) θ(η, β, Uij) =
(−1)(n−1)

21/2

(∫
CUij

η

)
e

(
1

2
tr(iβv)

)
×

∑
X∈Cβ,i,j

∫ ∞
0

sgn det(g(X))ξ−
1
2 exp

(
−π

2
t−2ξ−1

)
t−2dt

At this point interchanging of summation and integration in (6.36) is not allowed.
Instead, we define for s ∈ C,

(6.37) I(s) =

∫ ∞
0

∑
X∈Cβ,i,j

sgn det(g(X))ξ−
1
2 exp

(
−π

2
t−2ξ−1

)
t−2−sdt.

Via a similar argument as in Prop. 6.2, the sum is rapidly decreasing as t→∞ so that
I(s) is entire and for Re(s) > 1 we can interchange integration and summation by
an argument similar to Lemma 5.9(iv); see also the proof of Prop.6.7 below. Noting
sgn det(g(X)) = ε(X) in the notation of Section 3, we obtain

I(s) =
∑

X∈Cβ,i,j

ε(X)ξ−
1
2

∫ ∞
0

exp
(
−π

2
t−2ξ−1

)
t−2−sdt(6.38)

= 2(s−1)/2π−(s+1)/2Γ

(
1 + s

2

) ∑
X∈Cβ,i,j

ε(X)ξ
s
2 .(6.39)

The above series is (up to the factor det(v)−s) the Dirichlet series

(6.40) Ω(s, v, β) =
∑

X∈Cβ,i,j

f(s, v, g(X)),

where f : C× Pn ×GLn(R) −→ C is given by

(6.41) f(s, v, g) =
sgn det g

| det g|s
det v[tg1]s

and g = ( g0g1 ) as in Lemma 6.6.

Proposition 6.7 ([10]). Ω(s, v, β) has an analytic continuation into the entire com-
plex plane and

(6.42) Ω(0, v, β) = −
∑

X∈Credβ,i,j

B1(ν(X))sgn det(g(X)).
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Proof. Again we take m ∈ SLn(Z) as in the proof of Lemma 3.4 and obtain

Ω(s, v, β) =
∑

X∈Cβ,Uij ,h

f(s, v, g(X))(6.43)

=
∑

Y ∈Cβ0,Uij ,k

f(s, v′, g(Y )).(6.44)

in the notation of the proof of Lemma 3.4 with v′ = tm
−1
vm−1. Note g(Y ) =

y01 det(Y ′1). Then

(6.45)
∑

Y ∈Cβ0,Uij ,k

f(s, v′, g(Y )) =
∑

y01≡k01

sgn(y01)|y01|−s
∑
Y ′1

sgn det(Y ′1)
det v′[tY ′1]s

| detY ′1 |s
.

The sum over Y ′1 is finite and can be evaluated for s = 0, while the first is equal to
H(k01, s)−H(1− k01, s), where H(x, s) =

∑∞
n=0(x+ n)−s is the Hurwitz ζ-function.

The series converges for Re(s) > 1 and has an analytic continuation to the whole
complex plane. Observing H(x, 0) = 1

2
−x = B1(x) for x ∈ [0, 1) finishes the proof of

the proposition. Note here that the two Hurwitz ζ-functions correspond to the two
reduced elements in one Z-class in Cβ0,Uij ,k. �

Hence

(6.46) I(0) = −2−1/2
∑

X∈Credβ,i,j

B1(ν(X))sgn det(g(X))

and therefore

(6.47) θ(η, β, Uij) = (−1)n
∑

X∈Credβ,i,j

1

2
B1(ν(X))ε(X)e−2πtr(βv).

Considering (6.9) in conjunction with the definition of the cycle Cβ from Section 3
concludes the proof of Theorem 6.1!

�

7. The Positive Definite Fourier Coefficients

7.1. The defect δβ(η). For β > 0, the main point of [11, 12, 13] (in much greater
generality) is that the Fourier coefficient

θβ =
∑

X∈Ωβ∩(Ln+h)

ϕ(iv, Z,X)e−2πtr(βv)(7.1)

=
∑

X∈Γ\Ωβ∩(Ln+h)

∑
γ∈ΓX\Γ

γ∗ϕ(iv, Z,X)e−2πtr(βv)(7.2)

is a Poincaré dual form for the composite cycle Cβ, i.e.,

(7.3) aβ(η) =

∫
M

η ∧ θβ =

∫
Cβ

η
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for all η ∈ Zk
rd(M), the rapidly decreasing closed k-forms in M , and k = p − n.

(Actually, the case n = p − 1 is not treated there, but for p = 2 and n = 1 we will
show below that this is still true).

Furthermore, by Stokes’ Theorem, (7.3) also holds on the space of relative cobound-
aries Bk(M,∂M). Slightly more general we have

Lemma 7.1. If η is an exact k-form vanishing on ∂M , then (7.3) holds.

Proof. We consider the inclusion i : M −→M and note that as a consequence of the
relationship between duality on H∗(M) and duality on H∗(∂M), we obtain

(7.4) [i∗θβ] = PD[∂∗[Cβ]],

see e.g. [2], Th. 9.2, p. 357. We write η = dω, whence the restriction of ω to ∂M is
closed. Then

(7.5)

∫
M

η ∧ θβ =

∫
∂M

ω ∧ θβ =

∫
∂Cβ

ω =

∫
Cβ

η.

Here the second equality follows from (7.4) and that ω is closed on ∂M . �

However, (7.3) will not hold for all η ∈ Zk(M) unless Cβ is compact (which can
only happen for k = p− n ≤ 4).

In fact, we define the defect

(7.6) δβ(η) = aβ (η)−
∫
Cβ

η

for η ∈ Zk(M). By the above discussion, δβ factors through

(7.7) Zk
rd(M) +Bk(M,∂M) = Zk(M,∂M),

the closed forms vanishing at the boundary. The equality in (7.7) follows from the
fact that Hk(M,∂M,C) ' Hk

c (M,C) has a system of representatives consisting of
rapidly decreasing forms. So we proved

Lemma 7.2. For n < p− 1 or p = 2 and n = 1, δβ descends to a map

(7.8) δβ :
Zk(M)

Zk(M,∂M)
−→ C.

We take a neighborhood U of the boundary of M such that ∂M is a deformation
retract of U and obtain a projection map π : U −→ ∂M . We pick a smooth ’bump’
function ρ on M supported in U with ρ|V = 1 for another neighborhood V ⊂ U and
define a map

(7.9) ι : Ak−1(∂M) −→ Zk(M)

by ι(ω) = d (ρπ∗(ω)) on U and ι(ω) = 0 elsewhere. Note that ι(ω)|∂M = dω.

Lemma 7.3. We have the following exact sequence

(7.10) 0 −→ Ak−1(∂M)

Zk−1(∂M)

ῑ−→ Zk(M)

Zk(M,∂M)

r̄−→ Hk(∂M,C).



32 JENS FUNKE AND JOHN MILLSON

Here r̄ is the quotient of the restriction map r : Zk(M) −→ Zk(∂M) to the boundary;
in general this is not surjective. Also note that ῑ is independent of the choices involved,
so that (7.10) is intrinsic to the situation.

We can therefore study the map (7.8) via the exact sequence (7.10).

Proposition 7.4. δβ is not identically zero on (the image of) Ak−1(∂M)

Zk−1(∂M)
.

Proof. Let ω ∈ Ak−1(∂M). Then the calculation (7.5) for ι(ω) is no longer valid
(unless ω is closed) - and it is clear that there are examples so that (7.5) does not
hold, i.e., δβ(ι(ω)) 6= 0. For Riemann surfaces, we make this more explicit in the next
section. �

It is very tempting to investigate the other piece coming from Hk(∂M,C) using
Eisenstein cohomology. We carry this out for the Riemann surface case.

7.2. The defect for Riemann surfaces. For the remainder of this section we con-
sider the special case of SO0(2, 1). In particular, we prove the Theorems 1.5 and
1.6.

There is a double covering SL2(R) −→ SO0(2, 1) and the symmetric space D is just
the upper half plane H. We therefore work with SL2 in this section. Accordingly, we
change notation and write z = x+ iy ∈ D ' H for the orthogonal variable. We write
dxi for the basic differential form of the boundary component Ti of the Borel-Serre
compactification corresponding to the cusp `i. Hence dxi = (g−1

i )∗dx. Finally, for
convenience we assume that Γ = Γ(N), the principal congruence subgroup. Hence
the width of all cusps is equal to N .

We first illustrate that the defect is not identically zero on A0(∂M)

Z0(∂M)
.

By Theorem 5.10, the restriction of θ(τ, z) to a boundary component Ti is given by

(7.11) θ(τ, z)|Ti =

 ∑
X∈Wi∩(L+h)

P2(X)eπi(X,X)τ

 dxi =: θi(τ)dxi

(For the isotropic line `i defining a cusp, Wi = `⊥i /`i is one-dimensional, and identi-

fying Wi(R) with R we have P2(X)eπi(X,X) = XeπiX
2
.)

Pick a function f ∈ A0(∂M) = ⊕iA0(Ti) only supported at the cusp `0. Then

(7.12)

∫
M

ι(f) ∧ θ(τ, z) =

(∫
T0

f(x)dx

)
θ0(τ);

i.e., Aβ(ι(f)) is up to a factor the integral of f over the whole boundary circle. On
the other hand,

(7.13)

∫
Cβ

ι(f) =

∫
∂Cβ∩T0

f,

which is the oriented sum of the evaluations of f at the boundary points of Cβ. It is
certainly easy to find f , where these two terms are not the same; i.e., δβ(ι(f)) 6= 0.
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We briefly review the relevant facts for Eisenstein series and Eisenstein cohomology
needed.

We introduce the tangential Eisenstein series for the cusp `i,

(7.14) ET
i (s, z) =

∑
γ∈Γi\Γ

Im(g−1
i γ)∗(ysdx)

with s ∈ C. We easily see

(7.15) ET
i (s, z) =

1

2y
(Ei(s+ 1, z)−2dz + Ei(s+ 1, z)2dz̄)

with

(7.16) Ei(s, z)n =
∑

γ∈Γi\Γ

Im(g−1
i γz)sλ(g−1

i γ, z)n,

where λ(g, z) = cz+d
|cz+d| for g = ( a bc d ).

The following theorem is well known, convenient references are [8] and [5].

Theorem 7.5. (i) The series Ei(s, z)±2 converge for s > 1 and have a meromor-
phic continuation to C. At s = 1, Ei(s, z)±2 are holomorphic, and the Fourier
expansions Eij(1, z)±2 at a cusp `j are given by

1

y
Eij(1, z)−2 =

(
δij +

1

y
aij(0)

)
+
∞∑
m=1

aij(m)e2πimz/N ,(7.17)

1

y
Eij(1, z)2 =

(
δij +

1

y
aij(0)

)
+
∞∑
m=1

aij(m)e2πimz̄/N .(7.18)

(ii) The tangential Eisenstein series ET
i (s, z) is holomorphic at s = 0 and defines

a harmonic 1-form on M , which extends to the boundary. For two different
cusps i and j, the difference

(7.19) ET
i (0, z)− ET

j (0, z)

is closed, and its restriction to the boundary is dxi − dxj ∈ Z1(∂M) =
⊕kZ1(Tk). We call the space of all linear combination of tangential Eisen-
stein series consisting of closed forms E0.

(iii) The cohomology H1(M,C) splits as

H1(M,C) = H1
(2)(M,C)⊕H1

Eis(M,C),

where H1
Eis(M,C) is the image of E0 in H1(M,C), while H1

(2)(M,C) is the
L2-cohomology. Its classes can be represented by weight-2 cusp forms. Note
H1

(2)(M,C) ' H1
! (M,C) := Im (H1

c (M,C)→ H1(M,C)).

Theorem 1.5 now will follow from the vanishing of the defect δβ for tangential
Eisenstein series and weight-2 cusp forms. Via (7.1) we have to show

(7.20)

∫
Γ\B

η ∧
∑

γ∈ΓX\Γ

γ∗ϕ(iv, z,X) = e−π(X,X)

∫
CX

η.
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for (X,X) > 0. X⊥ has signature (1, 1) and therefore the stabilizer ΓX is either
infinitely cyclic or trivial. In the first case, the cycle CX is a closed geodesic and
(7.20) holds for any 1-form η. When the stabilizer is trivial, the cycle CX is an
infinite geodesic joining two cusps.

Theorem 7.6. Assume CX is an infinite geodesic. Then

(7.21)

∫
Γ\B

ET
i (0, z) ∧

∑
γ∈Γ

γ∗ϕ(z,X) = e−π(X,X)

∫
CX

ET
i (0, z).

Proof. First note that unfolding in (7.21) is not allowed. Recall we have a Witt basis
u0, w, u

′
0 for V , and we can assume that X = 2au0 + bw with a ∈ Q and b ∈ Q+ so

that CX is the geodesic joining the cusps ∞ and a
b
∈ Q. The stabilizer of the cusp

∞ is Γ∞ = Γ∞(N) = {( 1 k
0 1 ) : k ∈ NZ}.

We have

(7.22)

∫
Γ\B

ET
i (0, z)∧

∑
γ∈Γ

γ∗ϕ(z,X) =

∫
Γ\B

ET
i (0, z)∧

∑
γ∈Γ∞\Γ

∑
k∈NZ

γ∗ϕ(z,X+2kbu0).

We introduce a holomorphic function I(s) for s ∈ C by

(7.23) I(s) =

∫
Γ\B

ET
i (0, z) ∧

∑
γ∈Γ∞\Γ

∑
k∈NZ

γ∗
(
ysϕ(z,X + 2kbu0)

)

and unfold

(7.24) I(s) =

∫
Γ∞\B

ET
i (0, z) ∧

∑
k∈NZ

ysϕ(z,X + 2kbu0).

To justify this we first need some explicit formulae for ϕ. We have

ϕ(z,X + 2kbu0) =
√

2be
−π(2

(a−xb+kb)2

y2
+b2)dx

y
+
√

2

(
a− xb+ kb

y

)
e
−π(2

(a−xb+kb)2

y2
+b2)dy

y

(7.25)

=: ϕ1(k,X)dx+ ϕ2(k,X)dy,(7.26)

so that the Fourier transform with respect to k is given by

(7.27) ϕ̂(z,X + 2kbu0) = ϕ̂1(k,X)dx+ ϕ̂2(k,X)dy

with

ϕ̂1(k,X) = e−πb
2

e−π
(yk)2

2b2 e−2πikxe2πia
b
k,(7.28)

ϕ̂2(k,X) = −i ky
2b2

e−πb
2

e−π
(yk)2

2b2 e−2πikxe2πia
b
k.(7.29)
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By Poisson summation and (7.15) we obtain

I(s) =

∫
Γ∞\B

1

2y
(Ei(1, z)−2 + Ei(1, z)2)

 1

N

∑
k∈ 1

N
Z

ϕ̂2(k,X)

 ys(7.30)

+
−i
2y

(Ei(1, z)−2 − Ei(1, z)2)

 1

N

∑
k∈ 1

N
Z

ϕ̂1(k,X)

 ysdxdy,(7.31)

and this is rapidly decreasing as y → ∞ and of moderate growth as y → 0. Hence
unfolding is valid for Re(s) sufficiently large. We pick the standard fundamental
domain for Γ∞\B and integrate w.r.t. x. This picks out the 0-th Fourier coefficient:

I(s) =
−iy

4b2N
e−πb

2

∫ ∞
0

∞∑
m=1

(χ(m)ai(m)− χ(m)ai(m))me
−π (my)2

2(bN)2
−2πmy

N ysdy

(7.32)

− i

2
e−πb

2

∫ ∞
0

∞∑
m=1

(χ(m)ai(m)− χ(m)ai(m))e
−π (my)2

2(bN)2
−2πmy

N ysdy,(7.33)

where χ(m) = e2πia
b
m/N . Hence

I(s) =
−ie−πb2/2

2
√

2b

∞∑
m=1

(χ(m)ai(m)− χ(m)ai(m))(7.34)

×
∫ ∞

0

(
my√
2bN

+
√

2b

)
e
−π
“

my√
2bN

+
√

2b
”2

ysdy

=
−iNe−πb2/2

4
(
√

2bN)s (L(Ei(1, z)−2, χ, s+ 1)− L(Ei(1, z)2, χ, s+ 1))(7.35)

×
∫ ∞
b2/2

(√
t−
√

2b
)s
e−πtdt,

where L(Ei(1, z)±2, ..., s) are the (twisted) L-functions attached to Ei(1, z)−2 and
Ei(1, z)2. Specializing to s = 0 finally gives
(7.36)∫

M

ET
i (0, z) ∧

∑
γ∈Γ

γ∗ϕ(Z,X) =
−iN
4π

(L(Ei(1, z)−2, χ, 1)− L(Ei(1, z)2, χ, 1))e−πb
2

.

But now one easily checks that

(7.37)

∫
CX

ET
i (0, z) =

−iN
4π

(L(Ei(1, z)−2, χ, 1)− L(Ei(1, z)2, χ, 1)).

This proves the theorem. �

Remark 7.7. The given proof (or a slightly simpler version of it) also works for
η = f(z)dz with f(z) a weight-2 cusp form. This is important, since for CX an infinite
geodesic, the proof of the basic identities (7.20) and (7.3) for η rapidly decreasing is
actually not included in [13],[14].
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Because of Stokes’ theorem we have
∫
∂M

θ(τ, z) = 0 and therefore
∑

i θi(τ) = 0.
Thus

(7.38) Eis(θ)(τ, z) :=
∑
i

θi(τ)ET
i (0, z)

defines a closed differential form in M with values in the holomorphic cusp forms of
weight 3/2, and we define the truncated theta function

(7.39) θc(τ, z) = θ(τ, z)− Eis(θ, z).

So θc(τ) is per construction a rapidly decreasing closed differential 1-form in M with
values in the non-holomorphic modular forms of weight 3/2. We write

(7.40) θc(τ, z) =
∑
β

θcβ(v, z)e2πiβτ

for the Fourier expansion. For η = f(z)dz with f(z) a weight-2 cusp form we still
have

(7.41)

∫
M

η ∧ θcβ =

∫
M

η ∧ θβ =

∫
Cβ

η,

as cusp forms are orthogonal to Eisenstein series. (By Theorem 7.6, (7.41) actually
also holds for tangential Eisenstein since it is not too hard to show that the integral
of the wedge of two tangential Eisenstein series vanishes.) This justifies the

Definition 7.8. We define Cc
β to be the homology class dual to the Fourier coefficient

θcβ.

Cc
β does not depend on v since (7.41) and Th. 7.6 show that

∫
M
η ∧ θcβ indeed does

not depend on v.
This discussion proves Theorem 1.6.

8. The Theta Integral over Special Cycles

We can also define a lift

(8.1) Λ(τ, CU) =

∫
CU

θϕn(τ, Z),

where CU is the special cycle coming from a positive definite subspace U of dimension
p− n in V . Note that CU has dimension n.

We write LU = L ∩ U and LU⊥ = L ∩ U⊥ and obtain a decomposition

(8.2) Ln + h =
s∑
i=1

(LnU + h′i) + (LnU⊥ + h′′i )

with h′i ∈
(
L#
u

)n
and h′′i ∈

(
L#
U⊥

)n
. By θCU (τ, LU⊥ + h′′i ) we denote the top degree

theta integral Λ(τ, 1) =
∫
CU

∑
X∈(Ln

U⊥
+h′′i ) ϕn(τ,X) for the hyperbolic space CU . Note

that the top degree lift Λ(τ, 1) was computed in [10].
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Proposition 8.1. With the above notation, we have

Λ(τ, CU) =
s∑
i=1

ϑ(τ, LU + h′i)θCU (τ, LU⊥ + h′′i )

where ϑ(τ, LU + h′i) =
∑

X∈(LnU+h′i)
eπitr((X,X)τ) is the standard theta series of degree n

for the positive definite space U .

Proof. Using the explicit formula for ϕn = ϕn,V from Section 4 one easily checks that
under the pullback i∗U : An(B) −→ An(BU)

(8.3) i∗Uϕn,V = ϕ0,U ⊗ ϕn,U⊥ ,

where ϕ0,U is just the standard Gaussian for the positive definite space U . From this
the proposition easily follows. �

Theorem 8.2. (Theorem 1.6)

Λ(τ, CU) =
∑
β>0

[CU .Cβ]tre
2πitr(βτ) + (−1)n

∑
β≥0

rk(β)=n−1

[CU .C
s
β]e2πitr(βτ),

where [CU .Cβ]tr is the transversal intersection number of CU and Cβ (i.e., the sum
of the transverse intersections counted with multiplicities +1 and −1) and [CU .C

s
β] is

the evaluation of the cohomological intersection product.

Proof. First assume for simplicity that in (8.2) we have s = 1 and write h′ = h′1 and
h′′ = h′′1. Let β ∈ Symn(Q) be positive definite. It is easy to see that a (p − n)-
cycle DY with 1

2
(Y, Y ) = β intersects DU transversely if and only if the orthogonal

projection of Y onto U⊥ spans has rank n. From that we conclude that the transversal
intersection number [CU .Cβ]tr is given by

(8.4) [CU .Cβ]tr =
∑
α1≥0
α2>0

α1+α2=β

r(α1, U) deg(Cα2,CU ),

where r(α1, U) is the representation number of α1 in LnU + h′ and

(8.5) deg(Cα2,CU ) =
∑

X∈ΓU\Ωα2∩(Ln
U⊥

+h′′)

ε(X)

is the (weighted) degree of the 0-cycle Cα2 in the space CU defined by α2. But the
right hand side of (8.4) is exactly the β-th Fourier coefficient of ϑ(τ, LU + h′) times
the positive definite part of θCU (τ, LU⊥ + h′′), which is given by (8.5), see [10].

The statement for the singular coefficients is clear as Th. 1.4 shows that the β-th
coefficient of θ is the Poincaré dual of the absolute cycle Cs

β. But one can also see
in the same combinatorial way as above that the Fourier coefficient attached to a
semidefinite β represents the intersection numbers at the Borel-Serre boundary of the
singular cycle Cs

β and the boundary of CU . �
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