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Algebraic Geometry III/IV

Solutions, set 4.

Exercise 6.

(a)

For p = (z,y,2) € S?, we have
Lunp = {t(z,y,2)+(1-1)(0,0,1) | t € R} = {(tz, ty, 1+1(2—-1)) | ¢ € R}.

The intersection L,, NV; is calculated by equating 1+ ¢(z — 1) = 0,
i.e.,t=1/(1—z). This leads to

_ y .
Analogously, we obtain
R

We identify z = u + vi € C with py = (u,v,0) € R® and obtain
Lpp, = {(tu,tv,1 —t) | t € R}.
The intersection Ly, N S? is calculated via
(tu)* + (tv)* + (1 —1)* = 1,

ie.,
2w +v*+ 1) =2t

Solutions are then ¢ = 0 (corresponding to the point n € S?) and

t = 1+u§+v2 = H‘zz‘g (corresponding to the point ¢;'(z) € S?). We
obtain SRe(s) 2m(z) [sff — 1
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Analogously, identifying z = u + vi € C with py = (u, —v,0 € R? we
obtain SRe(x)  2m(s) 1 |sf
_ e(z m(z — |z
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(c) We first check that

$1(S*\{n, s}) = 62(S"\{n, s}) = C\{0}.
Therefore, we have ¢o¢; " : C\{0} — C\{0}. Moreover, we obtain for

z € C\{0}
_ 2Re(z) 2Im(z) |z]*>—1
L = o(X,Y. Z
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We have 1 + 7 = 1217,‘22\2 and, therefore,
B 1+ |2|? 2Re(z 14 |2|? 2Im(2) . z 1
oty - LELEP2ReG) LR oG s 1

20 T+1P 2P TP P E
Analogously, we obtain
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In both cases, the coordinate changes are holomorphic functions, fin-
ishing the proof that S? is a Riemann surface.

Exercise 7.

(a) We choose f: P& — 5% as follows:

1 (a/b) ifb#0,
¢y (b/a) if a # 0.
we first have to check whether this map is well defined, i.e., whether
¢71(1/2) = ¢o(2) for all z # 0:
_ 2Re(1/z) 2Im(1/z) |1/2]* —1
671(1)2) = (/)2’ (/)2’\/| :
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We recall from the lectures that ]P(lc is a Riemann surface via the fol-
lowing coordinate charts ¢ : {[a,b] | b # 0} — C, ¥4 ([a,b]) = a/b, and
Wy {[a,b] | a # 0} — C, 1([a,b]) = b/a. Then we have

¢rofoyi(z) =10 f([2,1]) = dro¢r (2/1) = 2,
and

$20 foihy!(2) = g20 f([L,2]) = ¢a0 ¢3! (2/1) = 2,
i.e., both compositions are holomorphic. Similarly, we obtain

brofouil(R)==, Grofouri(e) =1,

as maps C\{0} — C\{0}. So all maps ¢, o f o1; ' are holomorphic
and, therefore, f is a holomorphic map. One checks that the inverse
map f~!: 5% — PL is given by

[¢1($,y,2), 1] if (ZL‘,y,Z) 7é n,

Since all compositions ¢; o f o ;! are even biholomorphic and

(¢50foty) =tioflog ",
we conclude that f~! is also holomorphic.
We first check that g([a,b]) € Cp:
F(ab,a* b*) = a’b* — a*b* = 0.

Next, we check that ¢ is bijective by giving a formula for g—!:

-1 T 2] = [y,x], lfy#o
9 ([z,y,2]) {[x’z]’ 240

Note first that if [z,y, 2] € Cp then we cannot have y = z = 0 since
then we would also have 22 = yz = 0, i.e., = 0, which cannot be. In
the case [z,y, 2] € Cr and y # 0 and z # 0 we have

[y, 2] = lyz, 22] = [, w2] = [z, 2],
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so g~ is well defined. We easily check for [z,y, 2] € Cp and y # 0 that

9(g7 ([, y,2])) = gy, 2]) = [yz,y*, 2] = [z, y,2%/y] = [2,y, ]
and
97 (9([y, 2])) = g7 vz, v, 2%) = [y*, y2] = [y, 2].
Similarly, we obtain for [z,y, 2] € Cp and z # 0
g(g_l([l‘,y, Z])) - g([ZL‘, Z]) = [1‘2,1‘2, 22] = [$’ :L‘Q/Z, Z] - [$a Y, Z]

and
g_l(g([xa Z])) = g_l([xza :L‘2, 22]) = [IL‘Z, 22] = [$’ Z]
CF can be covered by the following two coordinate charts:

Uy ={a,b,c] € Cr | b#0}, Us={la,b,c] € Cp|c+#0},

Vi=Vo=Cand ¢, : Uy = Vi, ¢1([a,b,c]) = a/b, and ¢y : Uy — V5,
®2([a, b, c]) = a/c. Then we have

671 (2) =[2,1,2%], ¢y (2) = [2,2%,1].

For biholomorphicity of g, we have to check again that all the com-
positions ¢; o g o), ' and ¢; 0 go ¢; ! are biholomorphic. (Here 1; are
the coordinate charts from part (a).) We only consider the example
¢rogoy

$rogoyy’(z) = rog([z,1]) = di(lz, 2% 1]) = 2/ = 1/z,

which, as a map C\{0} — C\{0}, is biholomorphic.



