
Analysis III/IV (Math 3011, Math 4201)

Exercise Sheet 9 7.12.2011

Do Exercises 2 and 3 as homework for this week. Since I already
handed out the solution to Exercise 3 of Exercise Sheet 7, it doesn’t make
sense to mark it any more. Check your solution of that exercise against the
Solution Sheet to Exercise Sheet 7.

So only this week’s homework will be collected on Wednesday, 14 December,
right after the last lecture of this term, and it will be marked over the
Christmas vacation. Please do this homework, because it is important to
stay up to date with the course.

1. Let F : R
3 → R

3 be a smooth vector field. We associate to F = (f1, f2, f3)
the following differential 1- and 2-forms:

ωF = f1dx1+f2dx2+f3dx3, ηF = f1dx2∧dx3+f2dx3∧dx1+f3dx1∧dx2.

Show the following identities:

df = ω∇f for f ∈ C∞(R3),

dωF = ηG with G := curlF : R
3 → R

3,

dηF = div F dx1 ∧ dx2 ∧ dx3.

Derive form these identities and d2 = d ◦ d = 0 that curl ◦ ∇f = 0 and
div ◦ curlF = 0.

2. Let U ⊂ R
n with n ≥ 2 be an open set.

(a) Show that if ω ∈ Ω1(U) and c : [a, b] → U is a smooth curve with
‖Fω(c(t))‖ ≤ M for all t ∈ [a, b] (where Fω : U → R

n is the vector
field associated to ω, see Lemma 5.6), then
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where L(c) denotes the length of the curve c.

(b) Let ω ∈ Ω1(Rn −0) be a closed differential form. Assume that ‖Fω‖
is bounded in some disk centered at 0. Show that ω is exact in
R

n − 0.

Hint: Use the characterisation of exactness of differential 1-forms
by integrals over all closed curves.

(c) Why is the result in (b) not a contradiction to the non-exactness of
the form

ω = −
y

x2 + y2
dx +

x

x2 + y2
dy

in Exercise 2(b) of Exercise Sheet 7?



3. This exercise is dedicated to the proof of Poincaré’s Lemma for 1-
forms on starlike open sets U ⊂ R

2. Let p ∈ U be such that, for every
x ∈ U , the straight line segment connecting p and x lies totally in U .
For simplicity, we assume that p is the origin. The straight line segment
from p = 0 to x ∈ U can be parametrised by the curve cx : [0, 1] → U ,
cx(t) = tx. Assume that

ω = f1dx1 + f2dx2 ∈ Ω1(U)

is closed, i.e., the functions f1, f2 ∈ C∞(U) satisfy

∂f1

∂x2

=
∂f2

∂x1

.

Define f : U → R by

f(x) =

∫

cx

ω.

The goal of this exercise is to prove ω = df .

(a) Let x = (x1, x2) ∈ U . Show that

f(x) =

∫

1

0

f1(tx1, tx2)x1 + f2(tx1, tx2)x2 dt.

(b) Using the fact that ω is closed, prove that

∂f

∂x1

(x) =

∫

1

0

t(f1 ◦ cx)′(t) + f1 ◦ cx(t)dt.

You are allowed to interchange the integral and partial differenti-
ation without further justification, but carry out carefully and in
detail all other steps of your calculation. Then use partial integra-
tion to prove that

∂f

∂x1

(x) = f1(x),

and, analogously,
∂f

∂x2

(x) = f2(x).

(c) Conclude from (b) that ω = df , i.e., ω is exact.

The proof here can be easily generalised to higher dimensions and, with
more effort, to k-forms. But it is more important that you understand
the crucial ideas behind Poincaré’s Lemma in a particularly easy case.


