
Analysis III/IV (Math 3011, Math 4201)

Solutions to Exercise Sheet 6 16.11.2011

1. We conclude from f(x+h)−f(x) = Ah = Df(x)h+R(h) that Df(x) = A
and R = 0. Moreover,

g(x + h)− g(x) = 〈h,Ax〉+ 〈x,Ah〉+ 〈h,Ah〉 = 〈(A + A⊤)x, h〉+ 〈h,Ah〉

implies that g(x+h)−g(x) = x⊤(A+A⊤)h+R(h) with R(h) = 〈h,AH〉.
Since

0 ≤ lim
h→0

‖R(h)‖2

‖h‖2
≤ lim

h→0

‖A‖ · ‖h‖2
2

‖h‖2
= 0,

we see that the error term R(h) behaves the right way and we have
Df(x) = x⊤(A + A⊤).

2. The statement is false. Choose c : [0, 1] → R
2, c(t) = (t, t), and

cn : [0, 1] → R
2 to be an approximation, which is piecewise defined and

looking like a staircase with 2n steps. The functions c, c3 and c4 are
illustrated below. Obviously, we have

max
t∈[a,b]

‖c(t) − cn(t)‖2 → 0 as n → ∞,

but L(c) =
√

2 and L(cn) = 2 for all n.

(1, 1)

(0, 0)

3. (a) We apply the chain rule to f(γ(t)) = c and obtain

0 =
d

dt
f(γ(t)) = Df(γ(t))(γ′(t)) = 〈∇f(γ(t)), γ′(t)〉.

(b) Let Sr = {x ∈ R
2 | ‖x‖ = r} and γ : [a, b] → Sr be a curve in

the sphere Sr. It suffices to show that g ◦ γ is constant, which is
equivalent to

d

dt
g(γ(t)) = 0.



Using, again, the chain rule, we obtain

d

dt
g(γ(t)) = 〈∇g(γ(t)), γ′(t)〉 = h(γ(t))〈γ(t), γ′(t)〉.

Since ‖γ(t)‖2 = 〈γ(t), γ(t)〉 = r2, we conclude that

0 =
d

dt
〈γ(t), γ(t)〉 = 2〈γ(t), γ′(t)〉.

Put together, this implies d
dt

g(γ(t)) = 0, which we wanted to show.

4. Three full turns of the cycloid are illustrated above. Since c′(t) = (r −
r cos(t), r sin(t)) we have

‖c′(t)‖2 = 2r2(1 − cos(t)) = 4r2 sin2(t/2),

and the required length is given by

2r

∫ 2π

0
sin(t/2)dt = 4r

∫ π

0
sin(t)dt = 8r.

5. We have
∂F

∂y
(x, y) = 4y(1 + x2 + y2),

i.e., ∂F
∂y

vanishes precisely at y = 0. Looking at the level sets, they have
vertical tangents at all points (x, y) = (x, 0) 6= (0, 0) and, therefore, the
y-coordinate cannot be decribed, locally near these points, as function of
the x-coordinate. At (x, y) = (0, 0), the lemniscate has a cross-over and,
again, it is not possible to describe the y-coordinate of the lemniskate,
as a function of the x-coordinate near the origin (every x-value near 0
would correspond to two y-values).

Assuming y as a function of x in a level set (which means we exclude
y = 0), we obtain by differentiation:

0 = 2(x2 + y2)(2x + 2yy′) − 4x + 4yy′,

i.e.,

y′ =
x(1 − x2 − y2)

y(1 + x2 + y2)
.

This shows that y′ vanishes at x = 0 and at x2 + y2 = 1, which describes
a unit circle. The picture, again, illustrates that the y-coordinate of the
level sets assumes its maximal and minimal value at its intersection with
the circle x2 + y2 = 1.



6. We have Df(x1, x2) =

(

2x1 0
1 3x2

2

)

. If f were locally invertible at x =

(0, 0), Df(0, 0) =

(

0 0
1 0

)

would have to be an invertible matrix, which

it is not. Since Df(1, 1) =

(

2 0
1 3

)

is invertible, f is locally invertible at

x = (1, 1), by the Inverse Function Theorem. Moreover,

Df−1(1, 2) = Df−1(f(x)) = (Df(x))−1 =
1

6

(

3 0
−1 2

)

.

7. (a) We have

div(fF )(x) =

n
∑

i=1

∂(fFi)

∂xi
(x) =

∑

i

∂f

∂xi
Fi(x) + f(x)

∂Fi

∂xi
(x)

= 〈∇f(x), F (x)〉 + f(x)div F (x).

(b) Using the product rule, we obtain

∇(fg)(x) =

(

∂(fg)

∂x1
(x), . . . ,

∂(fg)

∂xn

(x)

)

= f(x)∇g(x) + g(x)∇f(x).

This implies with (a)

∆(fg) = div∇(fg) = div(f∇g)+div(g∇f) = f∆g+2〈∇f,∇g〉+g∆f.

8. (a) f is not a diffeomorphism even though it is bijective: If (x, x+y3) =
(x1, x1 + y3

1), then x = x1 and y3 = y3
1 , and the injectivity follows



from the injectivity of the function y 7→ y3 on the reals. For the
surjectivity, we have to solve (x, x+y3) = (u, v), which yields x = u
and y3 = v − u. The latter has a solution because y 7→ y3 on the
reals is surjective. If (u, v) 6= (0, 0), then u 6= 0 (in which case x 6= 0
and (x, y) 6= (0, 0)) or u = 0 and v 6= 0 (in which case y3 = v 6= 0
and (x, y) 6= (0, 0)). But if f were a diffeomorphism, its Jacobi
matrix Df(x, y) would have to be invertible for all (x, y) 6= (0, 0)
(since (Df(x, y))−1 = Df−1(f(x, y))). we have

Df(x, y) =

(

1 0
1 3y2

)

,

which is obviously not invertible whenever y = 0.

(b) f is obviously bijective and we have f ′(x) = 2x > 0 for all x ∈ (0, 1).
The same argument as above shows that f is a diffeomorphism.

(c) f is not a diffeomorphism, since we have detDf(0, 0) = 0: Let
t = tan(π

2 (x2 + y2)), for simplicity. Then

∂f1

∂x
(x, y) = π(1 + t2)x2 + t,

∂f1

∂y
(x, y) = π(1 + t2)xy,

∂f2

∂x
(x, y) = π(1 + t2)xy,

∂f2

∂y
(x, y) = π(1 + t2)y2 + t.

This implies that detDf(x, y) = πt(1 + t2)(x2 + y2) + t2. Note that
t = 0 for (x, y) = (0, 0), i.e., detDf(0, 0) = 0.


