
Analysis III/IV (Math 3011, Math 4201)

Solutions to Exercise Sheet 9 7.12.2011

1. Note that

df =
∂f

∂x1
dx1 +

∂f

∂x2
dx2 +

∂f

∂x3
dx3.

On the other hand, we have

∇f =

(

∂f

∂x1
,

∂f

∂x2
,

∂f

∂x3

)

,

i.e.,

ω∇f =
∂f

∂x1
dx1 +

∂f

∂x2
dx2 +

∂f

∂x3
dx3.

Next, note for a vector field F = (f1, f2, f3) we have

curlF =

(

∂f3

∂x2
−

∂f2

∂x3
,
∂f1

∂x3
−

∂f3

∂x1
,
∂f2

∂x1
−

∂f1

∂x2

)

,

i.e.,

ηcurl F =

(

∂f3

∂x2
−

∂f2

∂x3

)

dx2∧dx3+

(

∂f1

∂x3
−

∂f3

∂x1

)

dx3∧dx1+

(

∂f2

∂x1
−

∂f1

∂x2

)

dx1∧dx2.

On the other hand, since ωF = f1dx1 + f2dx2 + f3dx3,

dωF =

(

∂f1

∂x2
dx2 +

∂f1

∂x3
dx3

)

∧dx1+

(

∂f2

∂x1
dx1 +

∂f2

∂x3
dx3

)

∧dx2+

(

∂f3

∂x1
dx1 +

∂f3

∂x2
dx2

)

∧dx3,

which shows ηcurl F = dωF , after rearranging the latter expression and
using the fact that dxi ∧ dxj = −dxj ∧ dxi. Finally, for F = (f1, f2, f3)
and ηF = f1dx2 ∧ dx3 + f2dx3 ∧ dx1 + f3dx1 ∧ dx2, we obtain

dηF =
∂f1

∂x1
dx1 ∧ dx2 ∧ dx3 +

∂f2

∂x2
dx2 ∧ dx3 ∧ dx1 +

∂f3

∂x3
dx3 ∧ dx1 ∧ dx2,

i.e.,

dηF =

(

∂f1

∂x1
+

∂f2

∂x2
+

∂f3

∂x3

)

dx1 ∧ dx2 ∧ dx3 = div Fdx1 ∧ dx2 ∧ dx3.

The above calculations show that the following diagram commutes:

C∞(R3)
∇

−−−−→ X (R3)
curl

−−−−→ X (R3)
div

−−−−→ C∞(R3)




y
Φ0





y
Φ1





y
Φ2





y
Φ3

Ω0(R3)
d

−−−−→ Ω1(R3)
d

−−−−→ Ω2(R3)
d

−−−−→ Ω3(R3)

Here, X (U) denotes the space of smooth vector fields on U ⊂ R
n, and

the vertical maps Φi are bijective maps between functions/vector fields
and differential forms and defined as follows:

Φ0(f) = f, Φ1(F ) = ωF , Φ2(F ) = ηF , Φ3(f) = fdx1 ∧ dx2 ∧ dx3.



Since the vertical maps are bijective, we see that d2 = 0 translates into
curl ◦ ∇ = 0 and div ◦ curl = 0.

2. (a) We have

∣

∣

∣

∣

∫

c

ω

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ b

a

ωc(t)(c
′(t))dt

∣

∣

∣

∣

≤

∫ b

a

∣

∣〈Fω(c(t)), c′(t)〉
∣

∣ dt ≤

≤

∫ b

a

‖Fω(c(t))‖ · ‖c′(t)‖dt ≤ M

∫ b

a

‖c′(t)‖dt = ML(c).

(b) According to Proposition 5.13, we only habe to prove that we have
∫

c
ω = 0 for all closed curves c : [a, b] → R

n − 0. Choose M > 0 and
r > 0 such that ‖Fω(x)‖ ≤ M for all ‖x‖ ≤ r. Let ǫ > 0 be arbitrary.
We consider the free homotopy G : [a, b] × [ǫ, 1] → R

n − 0, defined by
G(t, s) = s ·c(t). Since G is a free homotopy and ω is closed, we conclude
that

∫

c

ω =

∫

cǫ

ω,

by Corollary 6.13. Note also that L(cǫ) = ǫ · L(c), since c′ǫ(t) = ǫc′(t).
This implies with (a) that

∣

∣

∣

∣

∫

c

ω

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

cǫ

ω

∣

∣

∣

∣

≤ M · L(cǫ) = ǫ · M · L(c).

Since ǫ > 0 was arbitrary, we must have
∫

c
ω = 0. This is what we wanted

to show.

(c) Note that Fω(x, y) =
(

− y
x2+y2 , x

x2+y2

)

and

‖Fω(0, y)‖ =
1

|y|
.

Note that 1/|y| is not bounded for any disk of centre 0, so we cannot
apply (b) in this case.

3. (a) Since c′x(t) = x = (x1, x2), we have

f(x) =

∫

cx

ω =

∫ 1

0
ωcx(t)(c

′

x(t))dt =

∫ 1

0
f1(cx(t))dx1(c

′

x(t))+f2(cx(t))dx2(c
′

x(t)) =

∫ 1

0
f1(tx1, tx2)x1 + f2(tx1, tx2)x2dt.

(b) Since ω = f1dx1 + f2dx2 is closed, we have ∂f1

∂x2
= ∂f2

∂x1
. Using this, we



obtain

∂f

∂x1
(x) =

∫ 1

0

∂

∂x1
(f1(tx1, tx2)x1 + f2(tx1, tx2)x2) dt

=

∫ 1

0

(

t
f1

∂x1
(tx1, tx2)x1 + f1(tx1, tx2) + t

f2

∂x1
(tx1, tx2)x2

)

dt

=

∫ 1

0

(

t
f1

∂x1
(tx1, tx2)x1 + t

f1

∂x2
(tx1, tx2)x2

)

dt +

∫ 1

0
f1(tx1, tx2)dt

=

∫ 1

0
t〈∇f(cx(t)), c′x(t)〉dt +

∫ 1

0
f1(cx(t))dt

=

∫ 1

0
tDf1(cx(t))(c′x(t))dt +

∫ 1

0
f1(cx(t))dt

=

∫ 1

0
t(f1 ◦ cx)′(t) + f1 ◦ cx(t)dt,

where in the last step we applied the chain rule. Partial integration yields

∂f

∂x1
(x) = [tf1 ◦ cx(t)]10−

∫ 1

0
f1◦cx(t)dt+

∫ 1

0
f1◦cx(t)dt = 1·f1(x)−0·f1(0) = f1(x).

Similarly, one shows ∂f
∂x2

(x) = f2(x), and we conclude that

df =
∂f

∂x1
dx1 +

∂f

∂x2
dx2 = f1dx1 + f2dx2 = ω,

i.e., ω is exact.


