
Differential Geometry III Problems

Michaelmas 2012

I. Plane curves

1. Sketch the trace of the smooth curve given by α(u) = (u3, u2), and mark the
singular points.

2. An epicycloid α is obtained as the locus of a point on the circumference of a circle
of radius r which rolls without slipping on a circle of the same radius. Show (but
only if you are feeling ambitious!) that the epicycloid may be parametrized by

α(u) = (2r sin u − r sin 2u, 2r cos u − r cos 2u), u ∈ R.

Find the length of α between the singular points at u = 0 and u = 2π.
[Use sin x− sin y = 2 cos(x+y

2 ) sin(x−y
2 ), and cos x− cos y = −2 sin(x+y

2 ) sin(x−y
2 )]

3. The catenary is the plane curve α(u) given by α(u) = (u, coshu). It is the curve
assumed by a uniform chain hanging under the action of gravity. Sketch the
curve. Find its curvature.

4. The tractrix is the plane curve α(u) given by

α(u) =
1

cosh u
(u cosh u − sinhu, 1).

Show that α(u) is the curve followed by a stone starting at (0,1) on the end of a
piece of rope of length 1 when the tractor on the other end of the piece of rope
drives along the positive x-axis starting at (0, 0), i. e. show that α(u) + tα(u) is
on the positive x-axis for u > 0 (and that α(0) = (0, 1)). Sketch the curve for all
real values of u.

5. If α denotes the catenary in Q.3, show that
(i) the involute of α starting from (0, 1) is the tractrix in Q.4;
(ii) the evolute of α is the curve given by

β(t) = (t − sinh t cosh t, 2 cosh t).

(iii) Find the singular points of β and give a sketch of its trace.

6. Parallels. Let α be a plane curve parametrised by arc length and d a fixed real
number. The curve β(u) = α(u) + dn(u) is called the parallel to α at distance d.
(i) Show that β is a regular curve except for values of u for which κ(u) 6= 0 and

d = 1/κ(u), where κ is the curvature of α.
(ii) Show that the set of singular points of the parallels is the evolute of α.
(iii) Use Maple (or any other software) to draw some parallels to the ellipse α(t) =

(2 cos(t), sin(t)). (The parametrisation is not arc length!). Draw the evolute
of the ellipse. Does your figure agree with (i) and (ii)?
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7. Contact with circles. A circle has equation C(x, y) = 0 where

C(x, y) = (x − a)2 + (y − b)2 − λ.

Let α = (x(t), y(t)) be a plane curve. Suppose that the point α(t0) is also on the
circle, so the constant λ is so that C vanishes at (x(t0), y(t0)). Then the equation
g(t) = 0 with

g(t) = C(x(t), y(t)) = (x(t) − a)2 + (y(t) − b)2 − λ

has a solution at t0. If t0 is a multiple solution of the equation, with g(i)(t0) = 0

for i = 1, . . . , k − 1 but g(k)(t0) 6= 0, we say that the curve α and the circle have
k-point contact at α(t0).
(i) Show that α and the circle have 2-point contact at α(t0) if the circle is tangent

to α at α(t0).
(ii) Suppose that κ(t0) 6= 0. Show that α and the circle have at least 3-point

contact at α(t0) if and only if the centre of the circle is the centre of curvature
of α at α(t0).

(iii) Show that α and the circle have at least 4-point contact if and only if the
centre of the circle is the centre of curvature of α at α(t0) and α(t0) is a
vertex of α.

II. Space curves

8. Let α(u) be a regular curve in R3. Show that the curvature κ and the torsion τ
of α are given by

κ =
|α′ × α′′|
|α′|3 , τ = −(α′ × α′′) . α′′′

|α′ × α′′|2 ,

where ′ denotes differentiation with respect to u.

9. Find the curvature and torsion of the curve

α(u) = (au, bu2, cu3).

10. Consider the regular curve given by

α(s) =
(

a cos
s

c
, a sin

s

c
, b

s

c

)

, s ∈ R

where a, b, c > 0 and c2 = a2 + b2. Then α(s) is a helix.
(i) Show that the trace of α lies on the cylinder x2 + y2 = a2.
(ii) Show that α is parametrized by arc length.
(iii) Determine the curvature and torsion of α (and notice that they are both

constant).
(iv) Determine the osculating plane of α at each point.
(v) Show that the line through α(s) in direction n(s) meets the axis of the cylin-

der orthogonally.
(vi) Show that the tangent lines to α make a constant angle with the axis of the

cylinder.
In fact, a helix is defined to be any curve on any circular cylinder with prop-
erty (vi); see next question.
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11. A curve α : I → R3 is called a helix if its tangent lines make a constant angle
with a fixed direction in R3. Suppose that τ(s) 6= 0 for all s ∈ I.
(a) Prove that α is a helix if and only if κ/τ = constant.
(b) Prove that the curve

α(s) =
(

a
c

∫

sin θ(s)ds, a
c

∫

cos θ(s)ds, b
cs
)

,

with c2 = a2 + b2, a 6= 0, b 6= 0 and θ′(s) > 0 is a helix.

12. Let α(u), β(u) be regular curves in R3 such that, for each u, the principal normals
nα(u) and nβ(u) are parallel. Prove that the angle between tα(u) and tβ(u) is
independent of u. Prove also that if the line through α(u) in direction nα(u) is

equal to the line through β(u) in direction nβ(u) then

β(u) = α(u) + rnα(u)

for some constant real number r.

13. Let α(u) be the curve in R3 given by

α(u) = eu(cos u, sinu, 1), u ∈ R.

If 0 < λ0 < λ1, find the length of the segment of α which lies between the planes
z = λ0 and z = λ1. Show also that the curvature and torsion of α are both
inversely proportional to eu. Finally, show that the involute of α, starting from
any point of α, is a plane curve.

14. Let β be the involute emanating from (a, 0, 0) of the helix in Q.10 defined by

β(s) = α(s) − stα(s), s > 0.

Prove that β lies in the plane z = 0 (why is this lucky for maypole dancers?) and
is the involute emanating from (a, 0, 0) of the circle of intersection of the plane
z = 0 with the cylinder x2 + y2 = a2.

15. Let α(s) be a curve parametrized by arc length with nowhere vanishing curvature
and torsion. Show that α lies on a sphere if and only if

τ

κ
=

d

ds

(

1

τκ2

dκ

ds

)

.

16. Let α be a regular curve parametrised by arc length with κ > 0 and τ 6= 0.
(a) If α lies on a sphere of centre c and radius r, show that

α − c = −ρn − ρ′σb,

where ρ = 1
κ and σ = −1

τ . Deduce that r2 = ρ2 + (ρ′σ)2.

(b) Conversely, if ρ2 + (ρ′σ)2 has constant value r2 and ρ′ 6= 0, show that α lies
on a sphere of radius r. (Hint: show that the curve α+ρn+ρ′σb is constant.)
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III. Surfaces

17. Let S2(1) = {(x, y, z) ∈ R3| x2 +y2 +z2 = 1 }. For (u, v) ∈ R2, let x(u, v) be the
point of intersection of the line in R3 through (u, v, 0) and (0, 0, 1) with S2(1).
Find an explicit formula for x(u, v). Show that x is a local parametrization of
S2(1) which covers S2(1) \ {(0, 0, 1)}.

18. Show that each of the following is a surface:
(i) the cylinder {(x, y, z) ∈ R3| x2 + y2 = 1 };
(ii) the hyperboloid of two sheets given by {(x, y, z) ∈ R3| x2 + y2 = z2 − 1 }.
In each case find a covering of the surface by coordinate neighbourhoods and
give a sketch of the surface indicating the coordinate neighbourhoods you have
used.

19. Let f(x, y, z) = (x + y + z − 1)2.
(i) Find the points at which grad f = 0.
(ii) For which values of c is the set determined by the equation f(x) = c a surface?
(iii) What is the set determined by the equation f(x) = c?
(iv) Repeat (i) and (ii) using the function f(x, y, z) = xyz2.

20. Let S = {(x, y, z) ∈ R3| z =
x2

a2
− y2

b2
}. Show that S is a surface and show that

at each point p ∈ S there are two straight lines passing through p and lying in S
(i. e. S is a doubly ruled surface).

21. Let x(u, v) = α(v) + uw(v) be a parametrization of a ruled surface S such that
|w(v)| ≡ 1. A curve β(v) lying in S is called a curve of striction if β′.w′ ≡ 0.
Find the curve of striction of the ruled surface in the previous question (using
either one of the rulings). (Hint: you may assume β(v) = α(v) + u(v)w(v).)

22. Show that the equation xz + y2 = 1 defines a surface S in R3. If α(v) =
(cos v, sin v, cos v) and β(v) = (1 + sin v,− cos v,−1 + sin v) show that, for all
v ∈ R, there are two straight lines through α(v), one of which is in direction
β(v), both of which lie on S. If x(u, v) = α(v)+uβ(v), u ∈ R, 0 < v < 2π, show
that x is a local parametrization of S.

23. Determine all surfaces of revolution which are also ruled surfaces.

24. If a,b,c > 0 show that the ellipsoid S in R3 defined by

x2

a2
+

y2

b2
+

z2

c2
= 1

is a surface and that

x(u, v) = (a sinu cos v, b sinu sin v, c cosu), 0 < u < π, 0 < v < 2π

is a local parametrization of S.
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25. Let S be the surface in R3 defined by z = x2 − y2. If

x(u, v) = (u + cosh v, u + sinh v, 1 + 2u(cosh v − sinh v)), u, v ∈ R,

show that x is a local parametrization of S.

26. (Moebius band) Let S be the image of the function f : R×(−ǫ, ǫ) → R3, (ǫ > 0),
defined by

f(u, v) = ((2 − v sin
u

2
) sinu, (2 − v sin

u

2
) cos u, v cos

u

2
).

Show that, for ǫ sufficiently small, S is a surface in R3 which may be covered
by two coordinate neighbourhoods. Give a sketch of the surface indicating the
coordinate curves.

27. (Real projective plane) Let f : R3 → R5 be defined by

f(x, y, z) = (yz, zx, xy,
1

2
(x2 − y2),

1

2
√

3
(x2 + y2 − 2z2)).

Show that:
(i) f(x, y, z) = f(x′, y′, z′) if and only if (x, y, z) = ±(x′, y′, z′);
(ii) the image S = f(S2(1)) of the unit sphere S2(1) in R3 is a surface in R5. (S

is often written as RP 2 and is called the real projective plane. Note that it
can be identified with the set of lines through the origin in R3).

(Hint: For (ii) you may find it helpful to consider the open subsets Wx, Wy, Wz

of R5 given by

Wx = {(x1, x2, x3, x4, x5)|x4 +
1√
3
x5 +

1

3
> 0},

Wy = {(x1, x2, x3, x4, x5)| − x4 +
1√
3
x5 +

1

3
> 0},

Wz = {(x1, x2, x3, x4, x5)|x5 <
1

2
√

3
}.

and use the fact that the intersections of S with Wx, Wy and Wz are the images
of the hemispheres of S2(1) given by x > 0, y > 0 and z > 0 respectively).

28. Find the coefficients of the first fundamental form of S2(1) with respect to the
local parametrization x defined in Q17.

29. Find the coefficients of the first fundamental forms of:
(i) the catenoid parametrized by

x(u, v) = (cosh v cos u, cosh v sin u, v), (u, v) ∈ (0, 2π)× R;
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(ii) the helicoid parametrized by

x̃(u, v) = (− sinh v sin u, sinh v cos u,−u), (u, v) ∈ (0, 2π)× R.

(iii) the surface Sθ (θ constant) parametrized by

y
θ
(u, v) = cos θ x(u, v) + sin θ x̃(u, v), (u, v) ∈ (0, 2π)×R.

30. Let x(u, v) be a local parametrization of a surface S. Show that, in the usual
notation, the vector αxu + βxv bisects the angle between the coordinate curves
if and only if √

G(αE + βF ) =
√

E(αF + βG) .

If
x(u, v) = (u, v, u2 − v2) ,

find a vector tangential to S which bisects the angle between the coordinate
curves at the point (1, 1, 0).

31.
(i) A local parametrization x of a surface S in R3 is orthogonal provided F = 0

(so xu and xv are orthogonal at each point). Show that, in this case, at any
point p = x(u, v) on S,

−dNp(xu) = L
Exu + M

G xv

−dNp(xv) = M
E xu + N

Gxv

where N denotes the Gauss map and E, F, G (resp. L, M, N) are the coeffi-
cients of the first (resp. second) fundamental form.

(ii) A local parametrization x of a surface S in R3 is principal provided F =
M = 0. Prove that, in this case, xu and xv are principal vectors at each
point with corresponding principal curvatures L/E and N/G.

32. Let f : R4 → R2 be given by

f(x1, x2, x3, x4) = (x1
2 + x2

2, x3
2 + x4

2).

For each pair of positive real numbers r1, r2 show that (r2
1, r

2
2) ∈ R2 is a regular

value of f . Let S = f−1(r2
1, r

2
2), and let

x(u, v) = (r1 cos(u/r1), r1 sin(u/r1), r2 cos(v/r2), r2 sin(v/r2)),

0 < u < 2πr1, 0 < v < 2πr2.

Show that x(u, v) is a local parametrization of S and compute the coefficients of
the first fundamental form of S with respect to this local parametrization.
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33. Let f(z) be a complex analytic function of the complex variable z. If C2 is
identified with R4 in the usual way then the graph of f is a surface in R4

which is parametrised by x(z) = (z, f(z)). Show that x(z) is an isothermal
parametrization.

34. Let S be the subset of R3 given by

S =
{(

u, v,
1

2
(u2 − v2)

)

| (u, v) ∈ R2
}

.

(a) Show that S is a surface in R3 and that

x(u, v) = (u, v,
1

2
(u2 − v2))

is a parametrization which covers S.
(b) Find the coefficients of the first fundamental form of S with respect to this

parametrization.
(c) Find the angles between the coordinate curves at the points (1, 0, 1/2) and

(1, 1, 0).

35. (a) Let f : R3 → R be defined by

f(x, y, z) = x sin z − y cos z.

Find the points at which grad f vanishes, and hence show that the set S with
equation f(x, y, z) = 0 is a surface.

(b) Show that x(u, v) = (sinh v cos u, sinh v sin u, u) is a parametrization which
covers the whole of S.

(c) Find the coefficients of the first fundamental form of S with respect to this
parametrization.

36. Let (u, v), u ∈ R, v > 0, be a parametrization of a surface H in R2 with E =
G = 1/v2, F = 0. Then H is the hyperbolic plane. Let c > 0 and let α(t) =
(c cos t, c sin t), π/6 ≤ t ≤ 5π/6. Show that the length of α in H is equal to
∫ 5π/6
π/6

1
sin tdt. (In fact α is the curve of shortest length between its endpoints.) Now

take c =
√

2 and find the angle of intersection of α with the curve β(s) = (1, s)
at their point of intersection.

37. Find two families of curves on the helicoid which, at each point, bisect the angles
between the coordinate curves of the parametrisation given by

x(u, v) = (v cos u, v sin u, u).

(Show that they are given by u ± sinh−1 v = c, where c is a constant on each
curve in the family.)
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38. A system of curves on the cylinder x2 + (y − a)2 = a2 (a 6= 0) is given by the
intersection of the cylinder with the paraboloids xz = λy, where λ is a parameter.
Show that every orthogonal trajectory of this system lies on a sphere with fixed
centre.

39. Let x(u, v) = (v cos u, v sin u, v + u
√

2) be a parametrization of a surface S.
(i) Find the orthogonal trajectories in S to the family of curves F obtained by

intersecting S with the planes z = constant.
(ii) Find the angle of intersection at the point (

√
2, 0,

√
2) of the coordinate curve

v = constant with the curve in the family F .
(iii) Find a family of curves in S which bisects the angles between the coordinate

curves at each point.

40. Show that if all the normals to a path-connected surface pass through a given
point then the surface is contained in a sphere. (You will need a bit of elementary
topology to do this).

41. Find a basis of the tangent plane at the point (a/2, b/2, c/
√

2) to the ellipsoid
S of Q24. If x is the local parametrization introduced in Q24 and L(v) is the
length of the regular curve α(t) = x(t, v), 0 < t < π, show that L has stationary
values at v = π/2, π, 3π/2, and interpret this fact geometrically.

42. Let S be a surface parametrized by

x(u, v) = (u cos v, u sin v, log cos v + u), −π

2
< v <

π

2
, u ∈ R.

For c ∈ (−π

2
,
π

2
), let αc be the coordinate curve v = c. Show that the length of

αc from u = u0 to u = u1 is independent of c.

43. Let f : S2(1) → S2(1) be given by f(p) = −p. Show that f is a diffeomorphism.
(The map f is called the antipodal map.)

44. Construct a diffeomorphism from the ellipsoid of Q24 to S2(1).

45. Let S be a surface in Rn and let v be a unit vector in Rn. Let h : S → R be
given by h(p) = p.v. Show that h is smooth and that p ∈ S is a critical point of
h if and only if v is normal to S at p.

46. Construct a local isometry from the plane P = {(x, y, 0) ∈ R3| x, y ∈ R} onto
the cylinder x2 + y2 = a2, (a 6= 0).

47. Let b be a positive number such that
√

1 + b2 is an integer n. Let S be the
circular cone obtained by rotating the curve α(v) = (v, 0, bv), (v > 0), about the
z-axis. If P is the plane defined in the previous question, show that the map
f : P \ {(0, 0, 0)} → S given by

f(r cos θ, r sin θ, 0) =
1

n
(r cos nθ, r sin nθ, br)

is a local isometry. Make a model to illustrate the map f using a sheet of paper.
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48. Let S be the surface defined in Q32 and let S1 be the cylinder in R3 given by

S1 = {(x, y, z) ∈ R3| x2 + y2 = r2
1 }.

Let g : S1 → R4 be given by

g(x, y, z) = (x, y, r2 cos(z/r2), r2 sin(z/r2)).

Show that g defines a surjective local isometry from S1 to S.

49. Let f : S2(1) → S2(1) be the map defined by

f(p) = πN
−1TπN(p) if p 6= (0, 0, 1), f(p) = p if p = (0, 0, 1),

where πN : S2(1)\{(0, 0, 1)} → C is the diffeomorphism defined by πN(x, y, z) =
x + iy

1 − z
and T : C → C is the function defined by T (w) = aw + b, where a, b ∈

C, a 6= 0. Show that f is a conformal diffeomorphism of S2(1). (In particular
this involves showing that f is smooth and conformal at (0, 0, 1)).

Give a sketch of S2(1) showing the curves of intersection of S2(1) with the
coordinate planes and their images under f when a = b = 1.

50. Show that the map f : S2(1) → S2(1) defined in the previous question is an
isometry if and only if |a| = 1 and b = 0. Hence show that every isometry of
S2(1) which fixes (0, 0, 1) is a rotation about the z-axis.

51. Suppose that f1 : S1 → S2 and f2 : S2 → S3 are local isometries between surfaces.
Prove that f2 ◦ f1 : S1 → S3 is a local isometry.

52. Let f : S3(1) \ {(0, 0, 0, 1)} → R3 be defined by

f(x1, x2, x3, x4) =
(

x1

1 − x4
,

x2

1 − x4
,

x3

1 − x4

)

,

(so that f is just stereographic projection from (0, 0, 0, 1) to the plane x4 = 0,
compare with your solution to Q17). Show that f defines a conformal diffeomor-
phism of the torus in R4

S1(r1) × S1(r2) = {(x1, x2, x3, x4) ∈ R4| x1
2 + x2

2 = r1
2, x3

2 + x4
2 = r2

2} ,

with r1
2 + r2

2 = 1, onto the torus of revolution Ta,b in R3 obtained by rotating
the circle

(x − a)2 + z2 = b2 , y = 0

about the z-axis, where a = 1/r1 and b = r2/r1.
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53. Let H = {(u, v) ∈ R2| v > 0} be the hyperbolic plane with metric

ds2 =
1

v2
(du2 + dv2),

and let S be the pseudosphere obtained by rotating the tractrix

α(t) = (
1

cosh t
, 0, t − tanh t) , t ≥ 0,

around the z-axis. Show that, with respect to a suitable choice of parametriza-
tion, the metric on S is given by

ds2 =
1

cosh2 t
(du2 + sinh2 tdt2),

and, by considering the change of variable v = cosh t, show that there is a local
isometry of the open subset H ′ = {(u, v) ∈ H| v > 1} of H onto S.

54. Let S be the surface of revolution parametrized by

x(u, v) = (cos v cos u, cos v sin u,− sin v + log tan(
π

4
+

v

2
)),

where 0 < u < 2π, 0 < v < π/2. Let S1 be the region

S1 = {x(u, v)| 0 < u < π, 0 < v <
π

2
}

and let S2 be the region

S2 = {x(u, v)| 0 < u < 2π,
π

3
< v <

π

2
}.

Show that the map

x(u, v) 7→ x(2u, arccos(
1

2
cos v))

is an isometry from S1 onto S2.

55. Let S be a surface of revolution. Prove that any rotation about the axis of
revolution is an isometry of S.

56. (The disk model of the hyperbolic plane). Let H̃ denote the unit disk with the
metric

ds2 =
4(du2 + dv2)

(1 − u2 − v2)2
,

and let H be the hyperbolic plane of Q53. Show that the map f : H → H̃ given
by

f(w) =
w − i

w + i
, w = u + iv ∈ H,

is an isometry.
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57. (The hyperbolic plane for relativity theorists!). Let Q : R3 → R be the quadratic
form defined by

Q(x, y, z) = x2 + y2 − z2, (x, y, z) ∈ R3.

(This is sometimes called an indefinite metric on R3). Let

S = {(x, y, z) ∈ R3|Q(x, y, z) = −1}.

(Thus S is a hyperboloid of two sheets, and is a “ sphere of radius
√
−1” in terms

of the indefinite metric). Show that the induced quadratic form on each tangent
plane TpS is positive definite and that the map f : H → S from the disk model
of the hyperbolic plane (see Q56) defined by

f(u, v) =
(2u, 2v, 1 + u2 + v2)

1 − u2 − v2
, (u, v) ∈ H,

maps H isometrically onto the component of S for which z > 0.

58. Let a,b,c, be non-zero real numbers. Show that each of the equations

x2 + y2 + z2 = ax,

x2 + y2 + z2 = by,

x2 + y2 + z2 = cz,

defines a surface and that each pair of surfaces intersects orthogonally at all points
of intersection. (Note, incidentally, that each of these surfaces is a sphere.)

59. Determine the Gauss map for both the catenoid x2+y2 = cosh2 z and the helicoid
x sin z = y cos z and show that in each case it is conformal. (You will find it both
helpful and interesting to use the isothermal coordinates of Q29). Show that the
image of the Gauss map is the subset S2(1) \ {(0, 0,±1)} of S2(1) in each case
and prove that the Gauss map is injective for the catenoid but not the helicoid.
(You might also find it interesting to consider the Gauss map for the surfaces Sθ

in Q29(iii)).
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