Question 17 Let $L_{(u, v)} \subset \mathbb{R}^{3}$ be the straight line through $(u, v, 0)$ and $(0,0,1)$, i.e.,

$$
L_{(u, v)}=\{(0,0,1)+t(u, v,-1) \mid t \in \mathbb{R}\} .
$$

We like to find the intersection points $(t u, t v, 1-t) \in L_{(u, v)} \cap S^{2}(1)$. This means that

$$
(t u)^{2}+(t v)^{2}+(1-t)^{2}=1,
$$

i.e., $t\left(t\left(1+u^{2}+v^{2}\right)-2\right)=0$. The choice $t=0$ leads to the intersection point $(0,0,1)+0(u, v,-1)=(0,0,1)$, and the choice $t=2 /\left(1+u^{2}+v^{2}\right)$ to the intersection point

$$
(0,0,1)+\frac{2}{1+u^{2}+v^{2}}(u, v,-1)=\left(\frac{2 u}{1+u^{2}+v^{2}}, \frac{2 v}{1+u^{2}+v^{2}}, \frac{u^{2}+v^{2}-1}{1+u^{2}+v^{2}}\right) .
$$

This shows that we have

$$
x(u, v)=\left(\frac{2 u}{1+u^{2}+v^{2}}, \frac{2 v}{1+u^{2}+v^{2}}, \frac{u^{2}+v^{2}-1}{1+u^{2}+v^{2}}\right) .
$$

The map is obviously continuous. By the geometric construction, we see that x is a bijective map from \mathbb{R}^{2} to $S^{2}(1) \backslash\{(0,0,1)\}$. In order to show that it is a homeomorphism, we calculate the inverse map $S^{2}(1) \backslash\{(0,0,1)\} \rightarrow$ \mathbb{R}^{2}. Let

$$
\left(S^{2}(1) \backslash\{(0,0,1)\}\right) \ni(X, Y, Z)=\left(\frac{2 u}{1+u^{2}+v^{2}}, \frac{2 v}{1+u^{2}+v^{2}}, \frac{u^{2}+v^{2}-1}{1+u^{2}+v^{2}}\right) .
$$

We want to express (u, v) in terms of (X, Y, Z). We see that $1-Z=$ $2 /\left(1+u^{2}+v^{2}\right)$ and, consequently, $u=X /(1-Z)$ and $v=Y /(1-Z)$. On $S^{2}(1) \backslash\{(0,0,1)\}$, we obviously have $Z \neq 1$, and $(u, v)=(X /(1-$ $Z), Y /(1-Z))$ is well defined. Moreover, this map is obviously continuous (as composition of continuous functions).
Finally, we need to show that x_{u}, x_{v} are linearly independent. We have

$$
\begin{aligned}
& x_{u}=\frac{2}{\left(1+u^{2}+v^{2}\right)^{2}}\left(1-u^{2}+v^{2},-2 u v, 2 u\right), \\
& x_{v}=\frac{2}{\left(1+u^{2}+v^{2}\right)^{2}}\left(-2 u v, 1+u^{2}-v^{2}, 2 v\right) .
\end{aligned}
$$

Now, observe that

$$
\left|\begin{array}{cc}
1-u^{2}+v^{2} & -2 u v \\
2 u & 2 v
\end{array}\right|=2 v\left(1+u^{2}+v^{2}\right) .
$$

Similarly, the determinant of two other corresponding entries of x_{u} and x_{v} leads to $2 u\left(1+u^{2}+v^{2}\right)$. So if $(u, v) \neq 0$, at least one of these two determinants is nonzero, i.e., the vectors x_{u}, x_{v} are linearly independent. In the case $(u, v)=(0,0)$, we have

$$
x_{u}(0,0)=(2,0,0), \quad x_{v}(0,0)=(0,2,0),
$$

which are again two linearly independent vectors.
Question 19 (i) We have $\operatorname{grad} f(x, y, z)=2(x+y+z-1)(1,1,1)$. Therefore, $\operatorname{grad} f(x, y, z)=0$ if and only if $x+y+z=1$, in which case we have $f(x, y, z)=(x+y+z-1)^{2}=0$.
(ii) We have $f\left(\mathbb{R}^{3}\right)=[0, \infty)$. Since every value $c \in(0, \infty)$ is a regular value, the set $\left\{x \in \mathbb{R}^{3} \mid f(x)=c\right\}$ is a surface. In the case $c=0$, we have

$$
\left\{x \in \mathbb{R}^{3} \mid f(x)=0\right\}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x+y+z=1\right\}
$$

and this is obviously a plane through $(1 / 3,1 / 3,1 / 3)$, orthonormal to $(1,1,1)$, i.e., again a surface.
(iii) For $c>0$, the set determined by $f(x)=c$ is the union of two planes, orthogonal to $(1,1,1)$ and satisfying

$$
E_{ \pm}=\{x+y+z=1 \pm \sqrt{c}\},
$$

i.e., E_{+}contains the point $\frac{1}{3}(1+\sqrt{c})(1,1,1)$ and E_{-}contains the point $\frac{1}{3}(1-\sqrt{c})(1,1,1)$.

Question 29 (i) We have

$$
\begin{aligned}
& x_{u}(u, v)=(-\cosh (v) \sin (u), \cosh (v) \cos (u), 0), \\
& x_{v}(u, v)=(\sinh (v) \cos (u), \sinh (v) \sin (u), 1) .
\end{aligned}
$$

This implies that

$$
\begin{aligned}
& E(u, v)=(-\cosh)^{2}(v) \sin ^{2}(u)+\cosh ^{2}(v) \cos ^{2}(u)=\cosh ^{2}(v) \\
& F(u, v)=0 \\
& G(u, v)=\sinh ^{2}(v) \cos ^{2}(u)+\sinh ^{2}(v) \sin ^{2}(u)+1=\sinh ^{2}(v)+1=\cosh ^{2}(v)
\end{aligned}
$$

i.e., the first fundamental form at $x(u, v)$ is just a multiple of the standard inner product in \mathbb{R}^{2} by the factor $\cosh ^{2}(v)$.
(ii) We have

$$
\begin{aligned}
& \widetilde{x}_{u}(u, v)=(-\sinh (v) \cos (u),-\sinh (v) \sin (u),-1), \\
& \widetilde{x}_{v}(u, v)=(-\cosh (v) \sin (u), \cosh (v) \cos (u), 0) .
\end{aligned}
$$

This implies that

$$
\begin{aligned}
\widetilde{E}(u, v) & =(-\sinh)^{2}(v) \cos ^{2}(u)+(-\sinh)^{2}(v) \sin ^{2}(u)+(-1)^{2}=\cosh ^{2}(v), \\
\widetilde{F}(u, v) & =0, \\
\widetilde{G}(u, v) & =(-\cosh)^{2}(v) \sin ^{2}(u)+\cosh ^{2}(v) \cos ^{2}(u)=\cosh ^{2}(v),
\end{aligned}
$$

i.e., the first fundamental form at $\widetilde{x}(u, v)$ is again just a multiple of the standard inner product in \mathbb{R}^{2} by the factor $\cosh ^{2}(v)$.
(iii) Now we choose

$$
y_{\theta}(u, v)=\cos (\theta) x(u, v)+\sin (\theta) \widetilde{x}(u, v) .
$$

We obviously have

$$
\begin{aligned}
\left(y_{\theta}\right)_{u} & =\cos (\theta) x_{u}+\sin (\theta) \widetilde{x}_{u} \\
\left(y_{\theta}\right)_{v} & =\cos (\theta) x_{v}+\sin (\theta) \widetilde{x}_{v}
\end{aligned}
$$

We easily check that $\left\langle x_{u}, \widetilde{x}_{u}\right\rangle=0=\left\langle x_{v}, \widetilde{x}_{v}\right\rangle$ and

$$
\left\langle x_{u}, \widetilde{x}_{v}\right\rangle+\left\langle x_{v}, \widetilde{x}_{u}\right\rangle=\cosh ^{2}(v)-\left(\sinh ^{2}(v)+1\right)=0 .
$$

This implies that

$$
\begin{aligned}
\left\langle\left(y_{\theta}\right)_{u},\left(y_{\theta}\right)_{u}\right\rangle & =\cos ^{2}(\theta) E+\sin ^{2}(\theta) \widetilde{E}+2 \sin (\theta) \cos (\theta)\left\langle x_{u}, \widetilde{x}_{u}\right)=\cosh ^{2}(v), \\
\left\langle\left(y_{\theta}\right)_{u},\left(y_{\theta}\right)_{v}\right\rangle & =\cos ^{2}(\theta) F+\sin ^{2}(\theta) \widetilde{F}+\sin (\theta) \cos (\theta)\left(\left\langle x_{u}, \widetilde{x}_{v}\right\rangle+\left\langle x_{v}, \widetilde{x}_{u}\right\rangle\right) \\
& =\cos ^{2}(\theta) \cdot 0+\sin ^{2}(\theta) \cdot 0+\sin (\theta) \cos (\theta) \cdot 0=0, \\
\left\langle\left(y_{\theta}\right)_{v},\left(y_{\theta}\right)_{v}\right\rangle & =\cos ^{2}(\theta) G+\sin ^{2}(\theta) \widetilde{G}+2 \sin (\theta) \cos (\theta)\left\langle x_{v}, \widetilde{x}_{v}\right)=\cosh ^{2}(v),
\end{aligned}
$$

i.e., the first fundamental form at $y_{\theta}(u, v)$ is again just a multiple of the standard inner product in \mathbb{R}^{2} by the factor $\cosh ^{2}(v)$.

Question 36 The computation of the length of α is based on the explicit formulas $\alpha(t)=(c \cos t, c \sin t)$ and $\alpha^{\prime}(t)=(-c \sin t, c \cos t)$. Therefore

$$
\left\|\alpha^{\prime}(t)\right\|_{\alpha(t)}^{2}=\frac{c^{2}}{c^{2} \sin ^{2} t}=\frac{1}{\sin ^{2} t}
$$

This implies that

$$
L(c)=\int_{\pi / 6}^{5 \pi / 6}\left\|\alpha^{\prime}(t)\right\|_{\alpha(t)} d t=\int_{\pi / 6}^{5 \pi / 6} \frac{1}{\sin t} d t .
$$

To calculate the intersection point of $\alpha(t)=(\sqrt{2} \cos t, \sqrt{2} \sin t)$ with the curve $\beta(s)=(1, s)$, we have to find $s>0$ with $1+s^{2}=(\sqrt{2})^{2}$. This leads to $s=1$, and shows that $\beta(1)=(1,1)=\alpha(\pi / 4)$. The angle ϕ of intersection between α and β at $(1,1)$ satisfies

$$
\cos \phi=\frac{\left\langle\alpha^{\prime}(\pi / 4), \beta^{\prime}(1)\right\rangle_{(1,1)}}{\left\|\alpha^{\prime}(\pi / 4)\right\|_{(1,1)} \cdot\left\|\beta^{\prime}(1)\right\|_{(1,1)}}=\frac{\langle(-\sqrt{2}, \sqrt{2}),(0,1)\rangle}{\|(-\sqrt{2}, \sqrt{2})\| \cdot\|(0,1)\|}=\frac{1}{\sqrt{2}} .
$$

Since $0 \leq \phi \leq \pi$, we conclude that $\phi=\pi / 4$.

