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Motivations

1 Explore concepts of metric geometry in the context of graph
theory

2 Develop efficient tools for the qualitative analysis of empirical
networks (from neurobiology, molecular biology, social
systems,...)
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Curvature in Riemannian geometry

Three types:1

• Scalar curvature
• Ricci curvature
• Sectional curvature

• Scalar curvature −→ assigned to points
• Ricci curvature −→ assigned to tangent vectors
• Sectional curvature −→ assigned to tangent planes

1J.J., Riemannian Geometry and Geometric Analysis, Springer, 6th ed., 2011
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Scalar = Ricci averaged over all directions at a point
Ricci = Sectional averaged over all planes containing a direction
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Curvature of graphs

• Scalar curvature −→ assigned to points
−→ assigned to vertices

• Ricci curvature −→ assigned to tangent vectors
−→ assigned to directions=edges (2 vertices)

• Sectional curvature −→ assigned to tangent planes
−→ assigned to triangles (3 vertices)

4/25



Curvature in Riemannian geometry
Scalar
Scalar curvature is a relatively weak invariant.

Ricci
Ricci curvature controls expansion properties of volumes or of
stochastic processes, as it averages over the divergence of geodesic
curves.
−→ Lower bounds carry geometric content,
in contrast to upper bounds (Lohkamp: Every manifold carries a
metric with negative Ricci).

Sectional
Sectional curvature controls distances in triangles from above.
−→ Upper bounds are geometrically powerful.
Manifolds of negative or nonpositive sectional curvature are
geometrically well understood, whereas the geometry of those of
positive or nonnegative curvature is still not clear.
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Curvature in Riemannian geometry, ctd.

Example: Relation between volume of a ball and area of its
boundary sphere

Ricci
With a lower Ricci curvature bound, the interior of a ball controls
its boundary
−→ from local to global

Sectional
With an upper sectional bound, the boundary of a ball controls its
interior.
−→ from asymptotic to local
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Curvature in Riemannian geometry, ctd.

Ricci
Ricci curvature controls local properties.
When such properties hold everywhere locally, they have global
geometric consequences.

Example: Ric ≥ K > 0 implies b1 = 0 (Bochner), λ1 ≥ K ′ > 0
(Lichnerowicz) (first nonzero Laplace eigenvalue)

Sectional
Sectional curvature controls global or asymptotic properties.
Such properties may hold in spite of local fluctuations.
Example: Gromov hyperbolicity in geometric group theory.

Conclusion: Ricci and sectional curvature bounds play
opposite roles in geometry.
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Volume growth
Ric ≥ 0 implies (at most) polynomial volume growth (R.Bishop)
and polynomial growth of finitely generated subgroups of π1
(J.Milnor) (same growth rates by an earlier result of A.S.Schwarz),
whereas Sec < 0 implies exponential volume growth on universal
cover (P.Günther) and of π1 (J.Milnor).

Ric ≥ 0 implies that
bounded harmonic functions are constant (S.T.Yau) and a
dimension estimate for polynomial growth harmonic functions
(Colding-Minicozzi, P.Li).
Analogous results for Cayley graphs of finitely generated groups of
polynomial growth. Such groups are virtually nilpotent
(M.Gromov). Polynomial growth harmonic function theorem on
Cayley graphs of such groups gives a new proof (B.Kleiner;
quantitative version by Shalom-Tao). Optimal estimate2

Theorem
Let (G,S) be a Cayley graph of a group of polynomial growth with
the homogeneous dimension D. Then for d ≥ 1, the space
Hd(G,S) of harmonic functions of degree d satisfies

dimHd(G,S) ≤ C(S)dD−1.

Holds also on graphs (with bounded geometry) roughly isometric
to Cayley graphs of groups of polynomial growth.

2B.B.Hua, J.J., Math.Z. 280:551–567 (2015); related work with B.B.Hua,
S.P.Liu, X.Li-Jost
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Curvature of graphs: Forman-Ricci

Weighted graph with edge weights we and vertex weights wv.
v ∼ w: vertices v and w connected by an edge,
e ∼ f : edges e and f share a vertex.
Forman’s curvature 3 for an edge e connecting vertices v1, v2.

Ric(e) = we

wv1

we
+ wv2

we
−

∑
ev1∼e,ev2∼e

[
wv1√
wewev1

+ wv2√
wewev2

]
(1)

where ev1 , ev2 denote the set of edges 6= e connected to vertices v1
and v2, resp.

For an unweighted graph, simply

Ric(e) = 2− degv1 − degv2. (2)

Comes from a combinatorial Bochner formula. A graph with
Ric > 0 has b1 = 0. Less trivial for higher dimensional simplicial
complexes.

3R.Forman, Discrete Comput. Geom. 29:323–374 (2003)
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Curvature of graphs: Forman-Ricci

Let now Γ be a directed graph, e an edge with tail v. We 4 define
the Ricci curvature of e as

Ric(e) = we

(
wv
we
−
∑
ev∼e

wv√
wewev

)
(3)

where ev denotes the set of edges 6= e connected to vertex v.

Together with the students Melanie Weber, R.P. Sreejith,
Karthikeyan Mohanraj, we currently investigate the Ricci curvature
properties of undirected and directed empirical networks. It turns
out that Ricci curvature seems to be a good indicator of other,
more global and hence more difficult to compute, properties of real
networks.

4A.Samal, E.Saucan, J.J., to appear
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Curvature of graphs: Ollivier-Ricci

Degree dv := #(neighbors of v)

mv(v′) :=
{ 1
dv

if v′ ∼ v
0 else.

Wasserstein distance of measures mv,mw for v ∼ w

W1(mv,mw) := min
ξ∈Π(mv ,mw)

∑
V×V

dist(v′, w′)ξ(v′, w′),

where Π(mv,mw) is the set of all measures with marginals µ and
ν (transportations from mv to mw.
Optimal transport of neighborhood of v to that of w.

Ollivier-Ricci curvature5

κ(v, w) := 1− W1(mv,mw)
dist(v, w) . (4)

5Y. Ollivier, J. Funct.Anal. 256 (2009) 810-864
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Curvature of graphs: Ollivier-Ricci
6

#(v, w) := #(triangles with vertices v, w)
= #(common neighbors of v, w).

Theorem

κ(v, w) ≥ −(1− 1
dv
− 1

dw
− #(v,w)

min(dv ,dw))+

−(1− 1
dv
− 1

dw
− #(v,w)

max(dv ,dw))+

+ #(v,w)
max(dv ,dw)

and also
κ(v, w) ≤ #(v, w)

max(dv, dw) .

Triangles, quadrangles and pentagons containing v and w help to
reduce the transportation cost. Without such short cycles,
neighbors of v and w (other than w and v themselves) have
distance = 3.

6S.P.Liu, J.J., Discrete Comput.Geom. 51, 300–322 (2014)
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Curvature of graphs: Ollivier-Ricci

κ(v, w) = 1− W1(mv,mw)
dist(v, w) assume > k.

Eigenvalues of ∆ satisfy (Ollivier)

k ≤ λ ≤ 2− k.

Unfortunately, k ≤ 0 for most graphs.
Improve estimate7 by considering neighborhood graph of order t,
with weights wv,w given by probabilies for reaching w from v in t
steps,

1− (1− k[t])1/t ≤ λ ≤ 1 + (1− k[t])1/t,

where
k[t] > 0 for t� 0 unless Γ is bipartite.

7F.Bauer, J.J., S.P.Liu, Math.Res.Lett.19, 1185–1205 (2012)
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Sectional curvature

3 aspects of nonpositive curvature
1 Turnpike theorem: Two shortest connections are never

further apart than their endpoints.

2 Alexandrov triangle comparison: The midpoint of an edge
of a triangle (composed of shortest geodesics) is not further
away from the 3rd vertex than it would in a Euclidean
comparison triangle (same side lengths).

3 3 can easily meet: The smallest maximal distance of a point
to three given points is not larger than it would be in a
Euclidean comparison triangle.

(For curvature ≤ K, instead of ≤ 0, we use a surface of constant
curvature K in place of the Euclidean plane. )
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Sectional curvature of graphs

Let γ(v, w) be a shortest path in Γ (connected) between the
vertices v, w.

Let u, v, w be vertices. Γ has nonpositive sectional curvature (in
the sense of Alexandrov) if for all u′ ∈ γ(v, w),

dist(u, u′) ≤ (1− dist(v,u′)
dist(v,w) )dist2(v, u)

+dist(v,u′)
dist(v,w) dist2(w, u)

−dist(v,u′)
dist(v,w) (1− dist(v,u′)

dist(v,w) )dist2(v, w),

that is, if the shortest path from v to w is not farther away from
another vertex u than were the case in a Euclidean triangle with
the same side lengths.
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Sectional curvature of graphs

Alternative definition8:

min
s∈V

max(dist(s, u),dist(s, v), dist(s, w))

is not larger than the corresponding quantity in Euclidean space.

This definition also works on disconnected metric spaces.
In order to capture asymptotic aspects, one may allow for an error
ε that is independent of the distances between the vertices u, v, w.

8M. Bačák, B. Hua, J. J., M. Kell and A. Schikorra, Diff.Geom.Appl. 38,
22–32 (2015)
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