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1 Euclidean Geometry

1.1 General form of isometries of R2

Klein’s idea: Understand geometry by looking at the group of transformations
preserving key properties of this geometry

In Euclidean Geometry, we start with Rn and its inner product

〈x, y〉 = x⊤y =

n∑

i=1

xiyi,
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where we consider x, y as column vectors.

Properties of the inner product:

• 〈x, y〉 = 〈y, x〉

• 〈x, y + z〉 = 〈x, y〉+ 〈x, z〉

• 〈λx, y〉 = λ〈x, y〉

• 〈x, x〉 ≥ 0

• 〈x, x〉 = 0 is equivalent to x = 0

The inner product induces a norm ‖x‖ =
√
〈x, x〉 and a distance function

d(x, y) = ‖x− y‖ ≥ 0.

Properties of the distance function:

• d(x, y) = d(y, x)

• d(x, y) ≥ 0

• d(x, y) = 0 is equivalent to x = y

• d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality)

Definition 1.1. f : Rn → Rn is called an isometry if f is surjective and if

d(f(x), f(y)) = d(x, y).

Natural Question: What are the isometries of Rn?

Example. Let A ∈ O(n) = {C ∈ M(n, R) | C⊤C = Id}, b ∈ Rn, and f :
Rn → Rn, f(x) = Ax + b. We show that f is an isometry. f is surjective:
Let y ∈ Rn be given. We have to solve f(x) = Ax + b = y. The solution is
x = A−1(y − b) = A⊤(y − b). It remains to show the following:

d(f(x), f(y))2 = ‖f(x)− f(y)‖2 = ‖(Ax + b)− (Ay + b)‖2 = ‖A(x− y)‖2

= 〈A(x− y), A(x − y)〉 = (x− y)⊤A⊤A(x − y)

= (x− y)⊤(x− y) = 〈x− y, x− y〉 = ‖x− y‖2 = d(x, y)2.

We will see later that these are all isometries of Rn.

Lemma 1.2. Every isometry f : Rn → Rn is injective.

Proof. Assume f(x) = f(y). Then

0 = d(f(x), f(y)) = d(x, y),

i.e., x = y.

Lemma 1.3. If f : Rn → Rn is an isometry, so is f−1.

2



Proof. Since f : Rn → Rn is bijective, f−1 : Rn → Rn exists and is also
bijective. Thus, f−1 is surjective. To show:

d(f−1(x), f−1(y)) = d(x, y) ∀x, y ∈ Rn.

But
d(f−1(x), f−1(y)) = d(f(f−1(x)), f(f−1(y))) = d(x, y),

since f is an isometry.

Lemma 1.4. If f, g : Rn → Rn are isometries, so is f ◦ g : Rn → Rn.

Proof. Since f, g : Rn → Rn are bijective, f ◦ g : Rn → Rn is also bijective, and
thus surjective. To show:

d(f ◦ g(x), f ◦ g(y)) = d(x, y).

This follows immediately from the facts that f, g are isometries:

d(x, y) = d(g(x), g(y)) = d(f(g(x)), f(g(y))) = d(f ◦ g(x), f ◦ g(y)).

Important consequence: The set of all isometries of Rn, denoted by I(Rn),
forms a group. Klein’s viewpoint: to understand Euclidean geometry means to
understand the group I(Rn) of transformations preserving the distance d.

Our first goal is to prove the following:

Theorem 1.5. Every isometry f : Rn → Rn is of the form

f(x) = Ax + b

with A ∈ O(n) and b ∈ Rn.

This is done in steps.

Lemma 1.6. Assume that g : Rn → Rn is an isometry with g(0) = 0. Then
g is uniquely determined by its values of g(e1), g(e2), . . . , g(en) ∈ Rn, where
e1, e2, . . . , en is the standard basis of Rn.

Proof. Let g, h : Rn → Rn, g(0) = h(0) = 0 and g(ei) = h(ei). We have to
show that g = h. We consider the isometry k : h−1 ◦ g. Then k(0) = 0 and
k(ei) = ei, and it suffices to show that k = id. Let y = k(x), x = (x1, . . . , xn)⊤,
y = (y1, . . . , yn)⊤.

a) We have ‖x‖ = ‖y‖:

‖y‖ = d(y, 0) = d(k(x), k(0)) = d(x, 0) = ‖x‖.

b) We now show that ‖y − ei‖ = ‖x− ei‖:

‖y − ei‖
2 = d(y, ei)

2 = d(k(x), k(ei))
2 = d(x, ei)

2 = ‖x− ei‖
2.

c) We have

‖y − ei‖
2 = 〈y − ei, y − ei〉 = ‖y‖2 − 2〈y, ei〉+ ‖ei‖

2,
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and, similarly,
‖x− ei‖

2 = ‖x‖2 − 2〈x, ei〉+ ‖ei‖
2.

We know from a) that ‖x‖ = ‖y‖, so we conclude from the previous formulas
and b),

xi = 〈x, ei〉 = 〈y, ei〉 = yi,

i.e., all components of x and y coincide. This implies that x = y.
Thus we have k = id and the proof is finished.

← →
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Lemma 1.7. Assume that g : Rn → Rn is an isometry with g(0) = 0 and
g(ei) = vi. Then v1, v2, . . . , vn are an orthonormal base of Rn.

Proof. We have to show that 〈vi, vj〉 = δij .
a) ‖vi‖ = d(vi, 0) = d(g(ei), g(0)) = d(ei, 0) = ‖ei‖ = 1.
b) ‖vi − vj‖ = d(vi, vj) = d(g(ei), g(ej)) = d(ei, ej) = ‖ei − ej‖.
c) We assume that i 6= j. Squaring the left hand side of b) yields:

‖vi − vj‖
2 = 〈vi − vj , vi − vj〉 = ‖vi‖

2 − 2〈vi, vj〉+ ‖vj‖
2 = 2− 2〈vi, vj〉,

by using a). Squaring the right hand side of b) yields, similarly,

‖ei − ej‖
2 = ‖ei‖

2 − 2〈ei, ej〉+ ‖ej‖
2 = 2.

Comparing both sides yields the required result

〈vi, vj〉 = 0.

Corollary 1.8. Assume that g : Rn → Rn is an isometry with g(0) = 0 and
vi = g(ei). Then A =

(
v1 v2 . . . vn

)
∈ O(n) and g(x) = Ax.

Proof. Since 〈vi, vj〉 = v⊤i vj = δij , we have A⊤A = Id, i.e., A ∈ O(n). Since
h(x) = Ax is an isometry with h(0) = 0 and g(ei) = vi = h(ei), we have g = h,
by Lemma 1.6.

Proof of Theorem 1.5. Let f : Rn → Rn be an isometry and b = f(0). Then
g(x) = f(x) − b is also an isometry (since it is the composition t−b ◦ f of the
two isometries f and t−b(x) = x− b). We have g(0) = 0 and, thus, by Corollary
1.8, g(x) = Ax with A ∈ O(n). This implies that f(x) = g(x) + b = Ax+ b.

1.2 Classification of isometries of R2

Next, we want to classify isometries of R2. Let us first look at concrete examples:

Examples. a) translations: ta(x) = x + a

b) rotations about origin: rα(x) = Rαx, Rα =

(
cosα − sinα
sin α cosα

)
is counter

clockwise rotation about origin by angle α
c) general rotations about z: rα,z(x) = Rα(x− z) + z
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d) reflection along a line l: sl. The set of fixed points of sl is the line l.
Assume first that l is a line through the origin, given by l = Rv and w⊥v and
‖v‖ = ‖w‖ = 1. If x = αv + βw, then

sl(x) = αv − βw = x− 2βw = x− 2〈x, w〉w.

If l is a general line l = w + V with V equals a line through the origin, then
sl(x) = sV (x− w) + w.

e) glide reflection: let l = w + V be a line, V be a parallel line through the
origin and a ∈ V . The glide reflection sl,a is then defined to be

sl,a = sl ◦ ta.

Claim: sl ◦ ta = ta ◦ sl.
Proof: Using the fact that sV is a linear map and that a lies in the fixed

point set of sV , we have

sl ◦ ta(x) = sl(x + a) = sV (x + a− w) + w = sv(x − w) + sV (a) + w

= sv(x− w) + w + a = sl(x) + a = ta ◦ sl(x).

Theorem 1.9. Let f : Rn → Rn be an isometry different from the identity.
Then f is a translation ta, a general rotation rα,z, a reflection sl along a line
l, or a glide reflection sl,a.

Definition 1.10. An isometry f(x) = Ax + b of Rn is called orientation pre-
serving or orientation reversing, if det A = 1 or detA = −1.

Proof of Theorem 1.9. Let f(x) = Ax + b. Then the column vectors of A are

an orthonormal base. Every unit vector is of the form
(
cosα sinα

)⊤
for

α ∈ [0, 2π) and a second orthogonal unit vector is either
(
− sinα cosα

)⊤

or
(
sin α − cosα

)⊤
. Thus

A + Rα =

(
cosα − sinα
sinα cosα

)
or A = Sα =

(
cosα sin α
sin α − cosα

)
.

Let f(x) = Rαx + b, i.e., an orientation preserving isometry, α ∈ [0, 2π). If
α = 0 then b 6= 0 (since f 6= id) and f(x) = x + b = tb(x). If α ∈ (0, 2π) then

det(I−A) = det

(
1− cosα sin α
− sinα 1− cosα

)
= (1−cosα)62+sin2 α = 2(1−cosα) 6= 0.

Hence (I −A)z = b has a unique solution z ∈ R2 and

rα,z(x) = Rα(x− z) + z = Rαx + (I −A)z = Rαx + b = f(x).

← →
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Let f(x) = Sαx + b, i.e., an orientation reversing isometry. Since

det(I −A) = det

(
1− cosα − sinα
− sinα 1 + cosα

)
= 1− cos2 α− sin2 α = 0,
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V = kerI − A is one dimensional (we never have I − A = 0). If b = 0 then
f = Sα = sV (since all vectors in V are fixed by f and a vector w⊥V must be
mapped to −w because of f 6= id). If b 6= 0 then b can be written as

b = 2w + v with w⊥V , v ∈ V .

Note that Sαw = −w, Sαv = v. Let l = w + V . Then

sl,v(x) = sl(x) + v = sV (x− w) + w + v = sV (x) + (I − sV )(w) + v

= sV (x) + 2w + v = Sαx + b = f(x),

i.e., f is a glide reflection.

Definition 1.11. Let f : Rn → Rn be a map. A point x ∈ Rn is called fixed
point of f if

f(x) = x.

Let us investigate on the fixed points of isometries in R2:

(a) translations ta, a 6= 0, have no fixed points at all, since x = ta(x) = x+a
is never fulfilled.

(b) let rα,z be a rotation with α(0, 2π). Then

rα,z(x) = x

⇔ Rα(x− z) = x− z

⇔ (I −Rα)(x − z) = 0

⇔ x− z = 0 since det(I −Rα) 6= 0

This shows that z is the only fixed point of rα,z .
(c) the fixed points of a reflection sl along a line l is obviously precisely the

line l
(d) finally, we consider a glide reflection sl,a, a 6= 0. Let V be a line through

the origin and parallel to l, i.e., l = w + V for an appropriate vector w ∈ R2.
Then

sl,a(x) = x

⇔ sl(x) + a = x

⇔ a = x− sl(x),

But one easily sees that x− sl(x) is orthogonal to V , whereas a 6= 0 is parallel
to V . This is a contradiction. So glide reflections don’t have fixed points.

Lemma 1.12. Let f(x) = Ax + b and g(x) + Cx + d be two isometries of Rn.
Then

(f ◦ g)(x) = ACx + e, (g ◦ f)(x) = CAx + f

with suitable vectors e, f ∈ Rn. In particular, the composition of two orientation
preserving or reversing isometries is orientation preserving and the composition
of an orientation preserving isometry with an orientation reversing is orienta-
tion reversing.

Proof. Straighforward.
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Remark 1. We have

RαRβ = Rα+β

SαRβ = Sα−β, RαSβ = Sα+β

SαSβ = Rα−β, in particular S−1
α = Sα

1.3 Conjugation of isometries of R2

Next, we look at conjugations of isometries in R2:

Theorem 1.13. Let f(x) = Ax + b ∈ I(R2). Then

f ◦ ta ◦ f−1 = tAa

f ◦ rα,z ◦ f−1 = rdet A·α,f(z)

f ◦ sl,a ◦ f−1 = sf(l),Aa

Proof. Note that f−1(x) = A−1x−A−1b. Then

(f ◦ ta ◦ f−1)(x) = f ◦ ta(A−1x−A−1b) = f(A−1x−A−1b + a)

= A(A−1x−A−1b + a) + b = x + Aa = tAa(x),

proving the first identity.
f ◦ rα,z ◦ f−1 is orientation preserving, by Lemma 1.12, and has fixed point

f(z):
(f ◦ rα,z ◦ f−1)(f(z)) = f ◦ rα,z(z) = f(z),

thus is a rotation about f(z) by the Classification Theorem 1.9. We distinguish
two cases:

a) f(z) = Rβz + b. Then, by Lemma 1.12,

(f ◦ rα,z ◦ f−1)(x) = RβRαR−βx + d = Rαx + d

for a suitable d ∈ R2, i.e., f ◦ rα,z ◦ f−1 = rα,f(z).
← →
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b) f(z) = Sβz + b. Then

(f ◦ rα,z ◦ f−1)(x) = SβRαSβx + d = R−αx + d

for a suitable d ∈ R2, i.e., f ◦ rα,z ◦ f−1 = r−α,f(z).
Finally, we first prove f ◦ sl ◦ f−1 = sf(l): By Lemma 1.12, f ◦ sl ◦ f−1

is orientation reversing and fixing the line f(l), since for x ∈ f(l) we have
f−1(x) ∈ l and:

f ◦ sl ◦ f−1(x) = f ◦ sl(f
−1(x)) = f(f−1(x)) = x.

But there is only one such isometry, by the Classification Theorem 1.9, namely,
sf(l). This implies

f ◦sl,a◦f
−1 = f ◦sl◦ta◦f

−1 = (f ◦sl◦f
−1)◦(f ◦ta◦f

−1) = sf(l)◦tAa = sf(l),Aa.
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Definition 1.14. Let G be a group and X be a set. An action of G on X is a
map which assigns to every g ∈ G a map Tg : X → X such that

Te = IdX , Tg1·g2
= Tg1

◦ Tg2
,

for all g1, g2 ∈ G (e equals the identity element of G). An action is called
transitive, if for every pair x, y ∈ X there exists a g ∈ G such that Tgx = y.

Note that, in a group action, we obviously have Tg1 = (Tg)
−1, since

Tg ◦ Tg−1 = Tg·g−1 = Te = IdX .

Examples. (a) The vector space G = Rn is a commutative group under addi-
tion. It acts on X = Rn via translations G ∋ a 7→ ta : Rn → Rn. The action is
transitive, since for x, y ∈ X = Rn and a = y − x ∈ G = Rn we have

ta(x) = x + a = x + (y − x) = y.

(b) The matrix group G = O(n) is a group under matrix multiplication. An
action on X = Rn is: G ∋ A 7→ RA : Rn → Rn with

RA(x) = Ax ∀x ∈ Rn.

Obviously, RI = IdRn and

(RA ◦RB)(x) = A(Bx) = (AB)x = RA·B(x).

This action is not transitive since 0 ∈ Rn cannot be mapped to any other point
in Rn via transformations RA.

Theorem 1.15. Two elements of I(R2) are conjugate if and only if one of the
following statements is true:

(a) both elements are the identity

(b) both elements are translations by non-zero vectors of the same length

(c) both elements are general rotations by angles in [−π, π) of the same non-
zero absolute value

(d) both elements are reflections

(e) both elements are glide reflections with the same non-zero glide distance

(Note that the glide distance of a glide reflection sl,a is the value |a| > 0.)

Proof. It follows from Theorem 1.13 that if two isometries in I(R2) are conjugate
then they both belong to the same class (a)-(e). It remains to show that two
isometries of the same class are conjugate: class (a) is trivial.

class (b): ta and tb with ‖a‖ = ‖b‖. Obviously, there exists an α ∈ [0, 2π)
such that b = Rαa. If f(x) = Rαx then

f ◦ ta ◦ f−1 = tAa = tb.
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class (c): rα,z and rβ,w with α, β ∈ [−π, π). If α = β, choose f(x) =

x+(w− z), if α = −β, choose f(x) = S0(x− z)+w with S0 =

(
1 0
0 −1

)
. Then

detS0 = −1 and
f ◦ rα,z ◦ f−1 = rβ,f(z) = rβ,w.

class (d): sl and sl′ . If l and l′ are parallel, then l′ = tb(l) and if l and l′

intersect in z, then l′ = rα,z(l) for suitable α ∈ [0, π). Choose f = tb or f +rα,z,
respectively. Then

f ◦ sl ◦ f−1 = sf(l) = sl′ .

class (e): sl,a and sl′,a′ with ‖a‖ = ‖a′‖. If l and l′ are parallel, then l′ = tb(l)
and l = tc(V ) with V a line through the origin, parallel to l and l′, and a′ = ±a.
To a′ = ±a, choose

f = tb+c ◦ (±IdR2) ◦ t−c,

respectively. Then f(l) = tb+c ◦ (±Id)(V ) = tb+c(V ) = l′ and

f ◦ sl,a ◦ f−1 = sf(l),±a = sl′,a′ .

If l and l′ intersect in z, then l′ = rα,z(l) for suitable α ∈ [0, π). Then a′ =
±Rαa. If a′ = Rαa then choose f = rα,z, if a′ = −Rαa = Rα+πa then choose
f = rα+π,z . In the second case, we have f(l) = rα+π,z(l) = l′. Then

f ◦ sl,a ◦ f−1 = sf(l),a′ = sl′,a′ .

← →

24 October 2008

1.4 Symmetry groups

Definition 1.16. Let S ⊂ Rn be a set. The symmetry group of S is given by

Γ(S) = {f ∈ I(Rn) | f(S) = S}.

Let h : Rn → Rm be a function. The symmetry group of h is given by

Γ(h) = {f ∈ I(Rn) | h ◦ f = h}.

Remark 2. The definition of a symmetry group of a function is more general
than the definition of a symmetry group of a set. If S is a set, we can choose
the characteristic function

h(x) =

{
1, if x ∈ S,

0, if x 6∈ S.

We then obtain Γ(S) = Γ(h). But h can encode more information: brightness,
colour, ... of a pattern (note that h is even allowed to be vector valued).

Examples. (a) windmill S: a symmetry f must fix the origin 0 and must
map the vertex x to one of the 8 vertices. This can be achieved by rkπ/4,
k ∈ {0, 1, . . . , 7}. Then r−kπ/4 ◦ f fixes the origin and x, i.e., it is either
the identity or the reflection along the horizontal line. But the latter is
not in the symmetry group Γ(S). Thus

Γ(S) = {rkπ/4 | k ∈ {0, 1, . . . , 7}}.
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(b) heptagon s: a symmetry must fix the origin 0 and must map the vertex x to
one of the 7 vertices. This can be achieved by r2kπ/7, k ∈ {0, . . . , 6}. Then
r−2kπ/7 ◦ f fixes the origin and x, i.e., is either the identity or reflection
along the vertical line l. The latter is in Γ(S). Thus we have

Γ(S) = {r2kπ/7 | k ∈ {0, . . . , 7}} ∪ {r2kπ/7 ◦ sl | k ∈ {0, . . . , 7}}
∼= D7 (dihedral group)

(c) infinite net S: Any symmetry f must map 0 to some node of the form
mv1 + nv2, m, n ∈ Z. This can be achieved by tmv1+nv2

, and hence
t−(mv1+nv2

◦ f fixes the origin, i.e., is either a rotation of a reflection
through the origin. Since v1 is not perpendicular to v2 and ‖v1‖ 6= ‖v2‖,
no reflection is in Γ(S). So t−(mv1+nv2) ◦ f is either the identity of a
rotation by π and

Γ(S) = {tmv1 + nv2} ◦ rkπ | m, n ∈ Z, k ∈ {0, 1}}.

(d) zig-zag pattern S: Any symmetry f must map 0 to some node, but the
nodes mv1 + nv2 are only the downward pointing nodes. An upward
pointing node can be reached from 0 by a glide reflection along the hor-
izontal line l and glide vector v1

2 : sl,v1/2. So either t−(mv1+nv2
◦ f or

t−(mv1+nv2
◦ sl,v1/26−1 ◦ f is fixing the origin and thus is either the iden-

tity or the reflection sl′ , where l′ is the vertical axis. This implies that

Γ(S) = group generated by tv1
, tv2

, sl,v1/2, sl′

= 〈tv−1, tv2
, sl,v1/2, sl′〉.

Note that these four isometries are not independent. We have, e.g., tv1
=

s2
l,v1/2.

A natural goal would be to classify all symmetry groups of I(Rn), at least up
to isomorphism. But this goal is too ambitious. Instead, we try to understand
all discrete symmetry groups of R2 a bit better.

Definition 1.17. A subgroup Γ ⊂ I(Rn) is called discrete if, for any x0 ∈ Rn

and any bounded set B ⊂ Rn, the set

{f ∈ Γ | f(x0) ∈ B}

is finite. A discrete subgroup Γ ⊂ I(Rn) is called uniform, if there is a compact
aet K ⊂ Rn such that ⋃

f∈Γ

f(K) = Rn.

A discrete uniform subgroup of I(Rn) is also called a crystallographic group.

Examples. (a) The group Γ = {ta | a ∈ Q2} ⊂ I(R2) is not discrete since,
for x = 0 ∈ R2 and B = {z ∈ R2 | ‖z‖ ≤ 1} we have

|{f ∈ Γ | f(0) ∈ B}| = |{a ∈ Q2 | ‖a‖ ≤ 1}| =∞.
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(b) The groups Γ = {ta | a ∈ Z2} or Γ = {ta | a ∈ Z× {0}} are both discrete.
The first group is uniform since, for K = [0, 1]× [0, 1],

⋃

f∈Γ

f(K) =
⋃

a∈Z2

a + K = R2,

but the second group is not uniform since every compact set K ⊂ R2 is
contained in a large enough square Q = [−n, n]× [−n, n] with n ≥ 1 and

⋃

f∈Γ

f(K) ⊂
⋃

f∈Γ

f(Q) = R× [−n, n] 6= R2.

Remark 3. For discreteness of Γ it is enough to check the following: For every
ball Br = {z ∈ Rn | ‖ ‖ ≤ r}, we have

|{f ∈ Γ | f(0) ∈ Br}| <∞.

This fact is proved in Exercise 5.

1.5 Translation subgroup and derived group

Definition 1.18. Let Γ ⊂ I(Rn) be a subgroup. The translation subgroup T (Γ)
is defined as

T (Γ) = {ta | a ∈ Rn}

and is isomorphic to L = {a ∈ Rn | ta ∈ Γ}. The derived group Γ′ is defined as

Γ′ = {f ′(x) = Ax | f(x) = Ax + b ∈ Γ}.

Both groups T (Γ) and Γ′ play an important role in Crystallography.
← →

27 October 2008

Lemma 1.19. Let Γ ⊂ I(R2) be a subgroup.

(a) If ta ∈ T (Γ), a 6= 0, then

{tf ′(a) | f ∈ Γ} ⊂ T (Γ).

(b) If T (Γ) = {IdR2}, then all f ∈ Γ have a common fixed point xo ∈ R2.

Proof. (a) Let f(x) = Ax + b. Then, by Theorem 1.13,

f ◦ ta ◦ f−1 = tAa = tf ′(a) ∈ T (Γ).

(b) T (Γ) = {IdR2} implies that Γ contains no glide reflection sl,a, a 6= 0,
since otherwise

s2
l,a = (ta ◦ sl) ◦ (sl ◦ ta) = t2a ∈ T (Γ).

Assume that f1, f2 ∈ Γ have no common fixed point. If both are rotations rα,z

and rβ,w with α, β ∈ (0, 2π) and zneqw, then

rα,z ◦ rβ,w 6= rβ,w ◦ rα,z , (1)

since otherwise we would have

rβ,w(rα,z(w)) = rα,z(w),

11



i.e., rα,z(w) would be fixed point of rβ,w, i.e.,

rα,z(w) = w,

i.e., w would be fixed point of rα,z , i.e., z = w, a contradiction. Since

rα,z ◦ rβ,w ◦ (rβ,w ◦ wα,z)
−1(x) = Ax + b

has trivial linear part by Lemma 1.12, this isometry is a translation. This
translation is non-trivial because of (1), which contradicts to T (Γ) = {IdR2}.
Consequently, all rotations in Γ have a common fixed point.

Let rα,z with α ∈ (0, 2Π) and sl be in Γ with z 6= l. Then we have sl(z) 6= z.
By Theorem 1.13, we obtain

sl ◦ rα,z ◦ s−1
l = r−α,sl(z) ∈ Γ,

but then Γ would contain two rotations with different fixed points, which was
ruled out before. Therefore, if Γ contains a rotation with fixed point z, then
all reflections sl must satisfy z ∈ l. It remains to consider the case when Γ
doesn’t contain any rotations at all, i.e., that all non-trivial elements of Γ are
reflections. If there are two different reflections sl, sl′ ∈ Γ, then sl ◦ sl′ is either
a non-trivial translation (if l and l′ are parallel) or a non-trivial rotation (if l
and l′ intersect). But these possibilities are ruled out under the condition that
the non-trivial elements of Γ are only reflections. So in this case we must either
have Γ = {IdR2} or Γ = {IdR2 , sl}, and in both cases all isometries of Γ have a
common fixed point.

Corollary 1.20. Let Γ ⊂ I(R2) be a discrete subgroup. Then

(a) T (Γ) is generated by linearly independent vectors, hence is isomorphic to
{0}, Z or Z2.

(b) Γ′ is finite.

(c) Γ is finite if and only if T (Γ) = {IdR2}.

Proof. We skip the proof of (a).
We first assume that T (Γ) = {IdR2}. Then all f ∈ Γ have a common fixed

point x0 ∈ R2. Let x1 ∈ R2 with d(x1, x0) = 1 and B1(x0) := {y ∈ R2 |
d(y, x0) ≤ 1}. Then f(x1) ∈ B1(x0) for all f ∈ Γ and, by discreteness,

|Γ| = |{f ∈ Γ | f(x1) ∈ B1(x0)}| <∞.

Consequently, we also have |Γ′| <∞.
Now, assume that ta ∈ T (Γ), a 6= 0. Then {tka | k ∈ Z} ⊂ T (Γ), and T (Γ)

is infinite. This implies that Γ is also infinite. Since

{tf ′(a) | f ∈ Γ} ⊂ T (Γ),

we conclude from the discreteness of T (Γ) that {f ′(a) | f ∈ Γ} ⊂ B‖a‖(0) =
{y ∈ R2 | d(y, 0) ≤ ‖a‖} is finite. Since there are at most two linear isometries (f
is a linear isometry if f(x) = Ax without translation part), namely a particular
rotation about 0 and a reflection sl with 0 ∈ l, which map a to f ′(a), Γ′ is also
finite.

12



Theorem 1.21. If a discrete group Γ ⊂ I(Rn) is infinite, then Γ′ is isomorphic
to Ck (the cyclic group of order k) or Dk (the dihedral group of order 2k) with
k ∈ {1, 2, 3, 4, 6}.

Proof. We skip the proof of the fact that discreteness of Γ implies Γ′ ∼= Ck or
Dk for some k ∈ N and prove only the restriction of k to {1, 2, 3, 4, 6}. We
assume k 6= 1.

Let r = reπ/k ∈ Γ′ be a rotation by a minimal angle α ∈ (0, 2π) and ta ∈ T (Γ)
be a non-zero translation with minimal ‖a‖ > 0. Then tr(a)−a ∈ T (Γ), by
Lemma 1.19 (a), and r(a) − a 6= 0, since k 6= 1. Now,

‖r(a) − a‖2 = ‖r(a)‖2 − 2〈r(a), a〉+ ‖aV ert2 = 2‖a‖2(1− cos
2π

k
) ≥ ‖a‖2,

i.e., cos 2π
k ≤

1
2 , k ≤ 6. Now, assume that k = 5. Then

0 < ‖r2(a) + a‖2 = 2‖a‖2(1 + cos
4π

5
) < ‖a‖2

and idR2 6= tr2(a)+a ∈ T (γ), contradicting to the minimality of ‖a‖.

The fact that rotations in a discrete group of isometries can only have or-
ders 2, 3, 4, 6 holds in Rn for dimensions n = 2 and n = 3, and is called the
Crystallographic Restriction Theorem. Crystallographic groups in I(R2) are
also called wallpaper groups and you can find more about them at the web-
page http://en.wikipedia.org/wiki/Wallpaper group. There are 17 dis-
tinct wallpaper groups, up to isomorphism.

The classification of crystallographic groups (i.e., discrete and uniform sub-
groups of I(Rn)) is of practical importance in dimension 3. There are 219
different crystallographic groups in dimension 3, up to isomorphism (see, e.g.,
the webpage http://en.wikipedia.org/wiki/Space group). Let us finally
mention (without proofs) the famous Bieberbach theorems:

Theorem 1.22 (Bieberbach (1912)). Let Γ ⊂ I(Rn) be a crystallographic group.
Then T (Γ) is a normal subgroup of Γ of finite index and a lattice (i.e., of the
form Zv1 + · · ·+ Zvn with v1, . . . , vn linearly independent).

Theorem 1.23 (Bieberbach (1912)). For every dimension n ∈ N, there is only
a finite number of isomorphism classes of crystallographic groups Γ ⊂ I(Rn).
Two crystallographic groups are isomorphic if and only if they are affine conju-
gate.

← →

31 October 2008

1.6 Fundamental domains and orbit spaces

Next, we introduce the important notions of fundamental set and fundamental
domain.

Definition 1.24. Let G be a group acting on a set X. This defines an equiv-
alence relation ∼ on X: We write x1 ∼ x2 if there is an element g ∈ G such
that x2 = gx1. The equivalence classes

[x] := {x′ ∈ X | x′ ∼ x}

13



are called orbits of the group action. A fundamental set S is obtained by choosing
one particular element in each orbit, i.e.

|S ∩ [x]| = 1 for every orbit [x].

The existence of a fundamental set in general is guaranteed by the axiom
of choice. But in many concrete cases a fundamental set can be chosen in an
explicit way.

Examples. (a) Let G be the group generated by all reflections sn : R → R at
integer points n ∈ Z. Note that sn(x) = −(x− n) + n = 2n− x and

(sn+1 ◦ sn)(x) = sn+1(2n− x) = (2n + 2)− (2n− x) = x + 2 = t2(x).

The orbits are given by

[x] = {x + 2n | n ∈ Z} ∪ {2n− x | n ∈ Z},

in particular [0] = 2Z and [1] = 2Z + 1 and a fundamental set is given by
S = [0, 1].

(b) Let G be the group generated by all translations tn : R→ R, tn(x) = x+n
for n ∈ Z. The orbits are given by [x] = x + Z and a fundamental set is given
by S = [0, 1).

Often, we don’t need these strict properties of a fundamental set. A set with
somewhat weaker properties is presented in the next definition:

Definition 1.25. An open connected domain F ⊂ Rn is called a fundamental
domain for a discrete group Γ ⊂ I(Rn) if it satisfies the following conditions:

(a)
⋃

g∈Γ gF = Rn, where U denotes the closure of U ⊂ Rn.

(b) For all g ∈ Γ, g 6= e: F ∩ gF = ∅.

(c) There are only finitely many g ∈ Γ such that

F ∩ gF 6= ∅.

Examples. (a) Let v1, v2 ∈ R2 be two linear independent vectors and Γ =
{tnv1+mv2

: R2 → R2 | n, m ∈ Z}. Then a natural fundamental domain is the
open parallelogram

F := {t1v1 + t2v2 | t1, t2 ∈ (0, 1)}.

The picture one should have in mind is that the “tiles” gF , g ∈ G, tessellate
the plane without overlapping.

(b) Let Γ be isometry group of the honeycomb pattern S ⊂ R2. Let the
origin be placed in the centre of a cell C0 of this pattern. Then every g ∈ Γ
must map C0 to a cell of the pattern. The subgroup Γ0 := {g ∈ Γ | gC0 = C0} is
isomorphic to the dihedral group D6. Choose F to be the open triangle with the
origin, a vertex of C0 and a midpoint of an adjacent side of C0 as its vertices.
Then ⋃

g∈Γ0

gF = C0,

14



and since every cell of the pattern can be reached from C0 by a translation of Γ,
we have ⋃

g inΓ

gF = R2,

proving property (a). Obviously, gF ∩ F = ∅ for all g ∈ Γ0, since the dihedral
group unfolds this triangle in the hexagon. This proves (b), since any group
element mapping C0 to a different cell, maps F to a triangle disjoint to F .
Finally, one checks that F meets 16 neighboring triangles, proving property (c).

Let G act on a set X . Then there is an obvious bijection between the
orbits [x]subsetX and points of a fundamental set S. If we denote the orbit
space by X/G, we thus have a 1 : 1-relation between the elements in X/G (the
orbits) and the points of S. But two points x, y in S might be quite far apart
even though the orbits [x] and [y] are close to each other. Let us look at an
example: X = R and G = {tn | n ∈}, S = [0, 1). Then the orbits [0] = Z and
[0.99] = 0.99 + Z = Z− 0.01 are very close, even though the points 0, 0.99 ∈ S
are far apart. To remedy this, one should think of X/G as the closed interval
[0, 1] with the points 0 and 1 identified. Topologically, this would coincide with
a circle S1.

Let us, finally, discuss two other 2-dimensional examples:

Examples. (a) Torus: Let Γ = {tne1+me2
| n, m ∈ Z} acting on R2. A

fundamental set is S = [0, 1)×[0, 1). Since the orbits (x, 0)+Z2 and (x, 0.99)+Z2

are very close as well as the (0, y) + Z2 and (0.99, y) + Z2, we should represent
the orbit space R2/Γ by the closed square [0, 1]×[0, 1] where we identify the lower
and upper side and the left and right side, i.e. (x, 0) is identified with (x, 1) and
(0, y) is identified with (1, y). These identifications imply that all four vertices
(0, 0), (0, 1), (1, 1) and (1, 0) are identified as one point. These identifications
yield, topologically, a two-dimensional torus T 2 as the space representing the
orbit space R2/Γ.

(b) Klein bottle: Let Γ be generated by the elements te2
and sl,e1

, where l
is the horizontal axis. Note that we have s2

l,e1
= t2e1

. A fundamental domain
is given by F = (0, 1) × (−1/2, 1/2). Straightforward considerations lead to
the conclusion that the orbit space R2/Γ should be seen as the closed square
[0, 1] × [−1/2, 1/2] with the side identifications (x, 0) ∼ (x, 1) and (0, y) ∼
(1, 1− y). Again, all four vertices (0,−1/2), (1,−1/2), (1, 1/2) and (0, 1/2) are
identified, but the topological surface now obtained is non-orientable and called
the Klein bottle. This surface cannot be embedded into R3 (we need R4 for this),
but it could be immersed into R3 with self-intersections. This surface is called
Klein bottle after Felix Klein, who set up the concept that we should understand
different geometries by studying the associated groups of these geometries. WE
come back to this theme straight at the beginning of the next chapter.

← →

3 November 2008

2 Affine Geometry

2.1 Affine transformations and parallel projections

Let us start again with Klein’s point of view:
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• Euclidean geometry is based on a space Rn with the transformation group
I(Rn) of isometries.

• Affine geometry, the topic of this chapter, is based on a space Rn with the
transformation group A(Rn) of affine transformations, i.e.,

A(Rn) := {f(x) = Ax + b | A ∈ GL(n, R), b ∈ Rn}.

Note that we have I(Rn) ⊂ A(Rn) and that A(Rn) is a group: if f(x) =
Ax + b and g(x) = Cx + d then we have

(f ◦ g)(x) = A(Cx + d) + b = ACx + Ad + b,

f−1(x) = A−1x−A−1b.

In the following we restrict our considerations entirely to two dimensions,
i.e., n = 2.

While distances d(x, y) = ‖x− y‖ are preserved under I(R2), which are the
geometric properties preserved by A(R2)? Certainly, no longer distances, as can
be seen by the affine map f(x) = 2x.

We first introduce bijective maps f : R2 → R2, which are called parallel
projections, and which will be later seen to be affine projections. These maps
are defined by embedding domain and image of the map f as different planes
into R3. Such a higher dimension embedding can be used to prove elegantly
highly non-trivial facts with only little use of 3-dimensional geometry. We will
employ this method also very successfully when we study Projective Geometry.

Example (parallel projection). Represent two copies of R2 by two separate
planes π1, π2 with their coordinate axes. Place the planes π1, π2 into R3. A map
f : π1 → π2 is defined via parallel rays (neither π1 nor π2 should be parallel to
these rays so that each ray intersects both planes in uniquely determined points).
Note that the so-defined map f : R2 → R2 remains the same if we move π1 or π2

parallel along the rays. f is obviously bijective and called a parallel projection.
The inverse map f−1 : R2 → R2 is also a parallel projection (we obtain it by
reversing the directions of all rays).

A parallel projection f : π1 → π2 is an isometry if π1 and π2 are parallel. In
fact, every isometry can be realized by a parallel projection.

Next, we list and prove some fundamental geometric properties of parallel
projections:

Proposition 2.1. let f : R2 → R2 be a a parallel projection. Then:

(a) f maps straight lines to straight lines.

(b) f maps parallel lines to parallel lines.

(c) f preserves the ratios of lengths along a given straight line.

Proof. (a) The rays through a straight line l ⊂ π1 fill a plane Σ ⊂ R3. This
plane intersects the non-parallel plane π2 in a line l′ ⊂ π2, which coincides with
the image f(l).

(b) Let l1, l2 ⊂ π1 be two parallel lines. The rays through li fill a plane
Σi ⊂ R3. Let l′i = f(li) = Σi ∩ π2. If l′1 ∩ l′2 sup{P} ⊂ π2, then f−1(P ) ∈ π1
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would lie in both planes Σ1, Σ2 and therefore also in l1 ∩ l2. But l1 ∩ l2 = ∅,
because both lines are parallel. This is a contradiction and we conclude that
l′1 ∩ l′2 = ∅.

(c) Let A, B, C be three different points on a line l in π1 and A′ = f(A),
B′ = (B) and C′ = f(C) their images in π2. We already know that A′, B′, C′

lie on a line, namely on l′ = f(l) ⊂ π2. We have to show that

d(A, B)

d(A, C)
=

d(A′, B′)

d(A′, C′)
. (2)

If both planes π1, π2 are parallel, then f is an isometry and there is nothing
to prove. Therefore, we assume that both planes are not parallel. By moving
π2, we can assume w.l.o.g. that A coincides with A′ in R3. Then the two lines
l, l′ ⊂ R3 intersect in A = A′. If they coincide, there is nothing to prove. So let
us assume that they don’t coincide and that A = A′ is their only intersection
point. Then l, l′ ⊂ R3 span a plane, which we denote by Σ. Σ contains all six
points A, B, C, A′, B′, C′ as well as the lines l, l′. Since the pairs of points B, B′

and C, C′ can be connected by two parallel line segments in Σ (since they are
images under parallel rays), the triangles ∆ABB′ and ∆ACC′ = ∆A′CC′ are
similar, i.e., one triangle is, up to congruence, a rescaled image of the other
triangle. This immediately implies the desired equality (2).

← →

7 November 2008

Next, we show that parallel projections are affine transformations:

Proposition 2.2. Every parallel projection f : R2 → R2 is an affine transfor-
mation, but not every affine transformation is a parallel projection.

Proof. We first consider a parallel projection f : R2 → R2 with f(0) = 0. We
prove that f is linear:

Let λ ∈ R and v ∈ R2. The points 0, v, λv lie on a line l through the
origin. They are mapped to the points f(0) = 0, f(v), f(λv) on a line l′. Since
f preserves ratios along lines, we must have f(λv) = λf(v).

Let v, w ∈ R2. We can assume that v and w are linear independent, since
otherwise one of the vectors is a multiple of the other, e.g., w = µv, and we can
use the previous argument to show that

f(v+w) = f((1+µ)v) = (1+µ)f(v) = f(v)+µf(v) = f(v)+f(µv) = f(v)+f(w).

Linear independence of v, w implies that 0, v, v+w, w are the vertices of a paral-
lelogram in π1. Since f maps parallel lines to parallel lines, f(0) = 0, f(v), f(v+
w), f(w) must be the vertices of a parallelogram in π2. Since 0, f(v), f(v) +
f(w), f(w) is also a parallelogram in π2, both parallelograms must be equal
(three of the four vertices of a parallelogram determine the fourth). This im-
plies that f(v + w) = f(v) + f(w).

Since f : R2 → R2 is linear and invertible, we must have f(x) = Ax with
A ∈ GL(2, R).

Now, assume that : R2 → R2 is a parallel projection with f(0) = b. Then
g(x) = f(x)− b is also a parallel projection (by just readjusting the coordinate
axes of π2) satisfying g(0) = 0, so we have g(x) = Ax with A ∈ GL(2, R). This
implies that f(x) = Ax + b, i.e., an affine transformation.
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Finally, we convince ourselves that the affine transformation f(x) = 2x
cannot be realized as a parallel projection. Since f(0) = 0, a parallel projection
representing f could be set up that both planes π1 and π2 intersect in their
origins. Obviously, both planes cannot be parallel, since then f would be an
isometry, which it isn’t. Therefore, both planes intersect in a line l through the
origin. Vectors on this line in π1 are mapped to vectors of the same length in
π2. But f(x) = 2x does not preserve the length of any non-zero vector.

Even though we cannot realize every affine transformation f by a paral-
lel projection, we can realize f as the composition of two parallel projections.
This implies that the set of parallel projections doesn’t have a group structure
(under composition) but that it is large enough to generate the group of affine
transformations. This is the content of the next proposition:

Proposition 2.3. Every affine transformation can be obtained as the composi-
tion of two parallel projections.

Proof. (a) We first prove that an affine transformation f(x) = Ax+b is uniquely

determined by the images f(0), f(e1), f(e2): Let A =

(
a1 a2

a3 a4

)
. Then b = f(0)

and
(

a1

a3

)
= f(e1)− b,

(
a2

a4

)
= f(e2)− b.

This means that we can reconstruct the affine transformation f from f(0), f(e1), f(e2).
(b) Let f : R2 → R2 be an affine transformation with f(0) = P, f(e1) =

Q, f(e2) = R. Below, we construct two parallel transformations g1, g2 : R2 → R2

with

g1(0) = P, g1(e1) = Q, g1(e2) = X ∈ R2,

g2(P ) = P, g2(Q) = Q, g2(X) = R.

Then the affine transformations g2 ◦g1 and f coincide in the points 0, e1, e2 and,
therefore, are equal.

Place π1 into R3 and a second plane π2, not parallel to pi1, intersecting π1 in
the origin, but not in the x-axis of π1. Arrange the coordinate system of π2 such
that the origin of π1 coincides with the point P of π2 and that Q does not lie on
the line π1 ∩π2 of intersection. Now, the line connecting e1 ∈ π1 with Q ∈ π2 is
not parallel to any of the two planes π1, π2 and defines a parallel projection g1

satisfying g1(0) = P , g1(e1) = Q and g1(e2) = X ∈ π2. Since 0, e1, e2 don’t lie
on a common straight line, their images P, Q, X under g1 don’t lie on a common
straight line, either.

Now, we introduce a third plane π3 in order to define g2. We place π3 in
such a way that it is not parallel to π2 and it intersects π2 in the line through
P, Q ∈ π2. Choose the coordinate system of π3 in such a way that P, Q ∈ π2

are mapped to points in π3 with the same coordinates. Therefore, we have
g2(P ) = P and g2(Q) = Q, whatever parallel projection we consider between
the planes π2 and π3. We know from above that X ∈ π2 does not lie on the line
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of intersection l = π2∩π3. In order to know that the point with the coordinates
of R in π3 lies not also in l, we use the fact that affine transformations map
0, e1, e2 to three affine independent points, a fact, which we will prove later.
Anticipating this result, we can conclude that the point R ∈ π3 does not lie on
l. Therefore, the line connecting X ∈ π2 with R ∈ π3 is not parallel two the
two planes π2 and π3 and defines a parallel projection g2 satisfying g2(P ) = P ,
g2(Q) = Q and g2(X) = R, finishing the proof.

We obtain as an immediate corollary:

Corollary 2.4. Let f(x) = Ax + b with A ∈ GL(2, R) and b ∈ R2 be an affine
transformation. Then:

(a) f maps straight lines to straight lines.

(b) f maps parallel lines to parallel lines.

(c) f preserves the ratios of lengths along a given straight line.

← →

10 November 2008

2.2 Fundamental Theorem of Affine Geometry

Next, we leave the 3-dimensional geometry behind and use a little bit of matrix
algebra in the arguments to follow. We first introduce the following important
notion in higher dimensional space Rn:

Definition 2.5. The points P0, P1, . . . , Pk ∈ Rn are called affine independent,
if the vectors P1 − P0, . . . , Pk − P0 ∈ Rn are linear independent.

Remarks 1. (a) Note that the n + 1 points 0, e1, . . . , en ∈ Rn are affine inde-
pendent.

(b) Affine independence does not depend on the order of the points. Namely,
one can check that the vectors P1 − P0, . . . , Pk − P0 are linear independent if
and only if the vectors P0 − Pi, . . . , Pi−1 − Pi, Pi+1 − Pi, . . . , Pk − Pi are linear
independent.

(c) Recall that, for given k + 1 points P0, . . . , Pk in Rn with n ≥ k, there is
always a k-dimensional affine plane containing them. These points are affine
independent, if they don’t lie in an affine plane of dimension < k. In particular,
three points in R2 are affine independent, if they don’t lie on a common line.

Theorem 2.6 (Fundamental Theorem of Affine Geometry). Every affine trans-
formation f : Rn → Rn maps n+1 affine independent points P0, . . . , Pn to n+1
affine independent points. Given two ordered sets P0, . . . , Pn and Q0, . . . , Qn

of affine independent points in Rn, there is a unique affine transformation
f : Rn → Rn satisfying f(Pi) = Qi.

Proof. Let P0, . . . , Pn ∈ Rn be n+1 affine independent points and f(x) = Ax+b
with A ∈ GL(n, R). Then

f(P1)− f(P0) = A(P1 − P0), . . . , f(Pn)− f(P0) = A(Pn − P0).

Since P1 − P0, . . . , Pn − P0 are linear independent and A ∈ GL(n, R), we con-
clude that A(P1 −P0), . . . , A(Pn −P0) are linear independent. This shows that
f(P0), . . . , f(Pn) are affine independent.
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Now, we are given two set P0, . . . , Pn and Q0, . . . , Qn of affine independent
points in Rn. We prove existence and uniqueness of an affine transformation
f : Rn → Rn with f(Pi) = Qi.

Existence: Let vi = Pi − P0 and wi = Qi − Q0. Then v1, . . . , vn and
w1, . . . , wn are both linear independent sets of vectors. Let A1 = (v1 . . . vn)
and A2 = (w1 . . . wn). Then A1, A2 ∈ GL(n, R) and C := A2A

−1
1 ∈ GL(n, R)

satisfies Cvi = A2ei = wi. Thus we have

C(Pi − P0) = Qi −Q0 for i = 1, 2, . . . , n.

The affine map f(x) = Cx + (Q0 − CP0) satisfies f(P0) = Q0 and

f(Pi) = C(Pi − P0) + Q0 = (Qi −Q0) + Q0 = Qi for i = 1, 2, . . . , n.

Uniqueness: Note first that an affine transformation k(x) = Ax + b with
A ∈ GL(n, R) with k(0) = 0 and k(ei) = ei for i = 1, . . . , n must be the
identity map: k(x) = x: k(0) = 0 implies that b = 0, i.e., k(x) = Ax is linear
and k(ei) = ei implies k(x) = x for all x ∈ Rn. Now, let f, g be two affine
transformations satisfying

f(Pi) = g(Pi) = Qi for i = 0, 1, . . . , n.

Let h be an affine transformation satisfying h(0) = P0 and h(ei) = Pi for
i = 1, . . . , n (existence of such a h is guaranteed by the previous arguments).
Then

h−1 ◦ g−1 ◦ f ◦ h(0) = h−1(g−1(f(P0))) = h−1(g−1(Q0) = h−1(P0) = 0

and

h−1 ◦ g−1 ◦ f ◦ h(ei) = h−1(g−1(f(Pi))) = h−1(g−1(Qi)) = h−1(Pi) = ei.

This shows that h−1 ◦ g−1 ◦ f ◦ h = idRn , i.e.

f ◦ h = g ◦ h,

and applying h−1 from the right on both sides yields

f = g.

2.3 Normal forms in conjugation classes

Next, for a given affine transformation f(x) = Ax+b, A ∈ GL(2, R), b ∈ Rn, we
look at all its conjugates g−1◦f ◦g with g ∈ A(R2) and try to find a particularly
simple form. We first deal with the linear part, since we know that

(g−1 ◦ f ◦ g)′ = (g−1)′ ◦ f ′ ◦ g′,

where h′ denotes the linear part h′(x) = Cx of an affine transformation h(x) =
Cx + d.
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Proposition 2.7. Let A ∈ GL(2, R). Then there exists a C ∈ GL(2, R) such
that C−1AC is one of the following three normal forms:

C−1AC =

(
λ1 0
0 λ2

)
, λ1, λ2 ∈ R,

C−1AC =

(
α −β
β α

)
, α, β ∈ R, β 6= 0,

C−1AC =

(
λ 1
0 λ

)
, λ ∈ R.

Proof. Let p(t) = det(tId−A) denote the characteristic polynomial of A. In C,
this polynomial of degree 2 is a product of the form

p(t) = (t− λ1)(t− λ2), λ1, λ2 ∈ C.

We distinguish three cases:
(a) λ1, λ2 ∈ R and λ1 6= λ2: Then there are two linear independent eigen-

vectors v1, v2 ∈ R2 and we have with C := (v1 v2) ∈ GL(2, R):

C−1AC =

(
λ1 0
0 λ2

)
.

(b) One of the eigenvalues is not real, i.e., λ1 = α + iβ with β 6= 0. Since
p(t) is a real polynomial, we have p(t) = p(t), and therefore

p(λ1) = p(λ1) = 0 = 0,

i.e., λ2 = λ1 = α− iβ. Then

p(t) = (t− λ1)(t− λ1) = t2 − 2αt + α2 + β2.

Then the theorem of Cayley-Hamilton yields

A2 − 2αA + (α2 + β2)Id = 0,

which implies that
(A− αId)2 = −β2Id.

Let J = β−1(A− αId). Then

J2 = β−2(A− αId)2 = −Id,

i.e. J ∈ GL(2, R2). Now let v1 6= 0 be an arbitrary vector and v2 = Jv1. If v1

and v2 were linear dependent, then we would have v2 = µv1 and µ2v1 = J2v1 =
−v1, a contradiction. Thus v1 and v2 are linear independent and C = (v1 v2) ∈
GL(2, R). From

v2 = Jv1 = β−1(A− αId)v1 = β−1(Av1 − αv1)

we conclude that
Av1 = αv1 + βv2,

and from

−v1 = J2v1 = Jv2 = β−1(A− αId)v2 = β−1(Av2 − αv2)
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we conclude that
Av2 = −βv1 + αv2.

This implies with C = (v1 v2):

C−1AC =

(
α −β
β α

)
.

← →

14 November 2008

(c) We have λ1 = λ2 ∈ R. Then p(t) = (t−λ)2 = t2−2λt+λ2 with λ := λ1.
By Cayley-Hamilton, we also have

(A− λId)2 = 0.

This implies that A−λId is not injective, for otherwise it would also be surjective
and A−λid as well as (A−λId)2 would both be bijective. Let V := ker(A−λId).
Since A− λId is not injective, we have V 6= {0}. If V = R2 then A = λId and

A =

(
λ 0
0 λ

)
.

Otherwise, choose a vector v2 6∈ V = ker(A − λId) and v1 = (A − λId)v2 6= 0.
Then v1, v2 cannot be linear dependent, for otherwise we would have v1 = µv2

with µ 6= 0 and

0 = (A− λId)2v2 = (A− λId)v1 = µ(A− λId)v2 = µv1 6= 0.

Moreover, 0 = (A− λId)2v2 = (A− λId)v1 implies that

Av1 = λv1,

and we also have, by the construction of v1,

Av2 = v1 + λv2.

Thus, if we choose C = (v1 v2), we obtain

C−1AC =

(
λ 1
0 λ

)
.

The above proposition is useful for the proof of the following result:

Theorem 2.8. Let f(x) = Ax + b with A ∈ GL(2, R) and b ∈ R2 be an affine
transformation. Then f is conjugate to one of the following normal forms:

g(x) =

(
λ1 0
0 λ2

)
x, λ1, λ2 ∈ R \ {0}, λ1 ≥ λ2,

g(x) =

(
α −β
β α

)
x, α, β ∈ R, β 6= 0,

g(x) =

(
λ 1
0 λ

)
x, λ ∈ R \ {0},

g(x) =

(
λ 0
0 1

)
x +

(
0
1

)
, λ ∈ R \ {0},

g(x) =

(
1 1
0 1

)
x +

(
0
1

)
.
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Part of proof. One first chooses C ∈ GL(2, R) as in Proposition 2.7 and obtains
with h(x) = Cx and b1 = C−1b:

h−1 ◦ f ◦ h(x) = C−1(A(Cx) + b) = (C−1AC)x + C−1b = (C−1AC)x + b1.

Now, A1 := C−1AC has one of the forms in Proposition 2.7. Thus f is conjugate
to f1(x) = A1x + b1. If det(I − A1) 6= 0, then I − A1 is invertible and v =
(I −A1)

−1b satisfies b = v−A1v. Then f2 = t−v ◦ f1 ◦ tv is conjugate to f1 and

f2(x) = f1(x + v)− v = A1(x + v) + b1 − v = A1x + b1 − (v −A1v) = A1x,

i.e., we are able to remove the translational part of f1 in this case by conjugation
with tv. If det(I − A1) = 0, we cannot completely remove the translational
part, but we can simplify the translational part into the form presented in the
theorem. Finally, note that the first three normal forms have a fixed point,
namely x = 0, whereas the last two don’t have fixed points.

← →

17 November

2.4 Applications: Ceva’s and Menelaus’ Theorem

We like to finish this chapter by looking at two classical theorems of affine
geometry. Before so doing, let me recall two important formulas for the ratios
of three points P, Q, R on a line l. If the coordinates are given by P = (xp, yp),
Q = (xq , yq) and R = (xR, yR) and l is not parallel to the y-axis, then the
x-coordinate formula tells us that

PQ

QR
=

xQ − xP

xR − xQ

where PQ
QR denotes the ratio of the segments PQ and QR (which can be negative

if Q doesn’t lie between P and R). If l is not parallel to the x-axis, then the
y-coordinate formula tell us that

PQ

QR
=

yQ − yP

yR − yQ
.

Theorem 2.9 (Ceva’s Theorem). Let ∆ABC be a triangle, and let X be a
point which does not lie on any of its extended sides. If the line lAX through A
and X meets the line lBC in P , lBX meets lCA in Q and lCX meets lBA in R,
then

AR

RB
·
BP

PC
·
CQ

QA
= 1.

Proof. Let ∆ be the standard triangle with the vertices 0, e1, e2. By the Funda-
mental Theorem of Affine Geometry, there is an affine transformation f which
maps ∆ABC to ∆ and f(A) = 0, f(B) = e1 and f(C) = e2. Since affine
transformations map straight lines to straight lines and preserve ratios along
lines, we only have to prove Ceva’s Theorem for the standard triangle. Thus
let A = 0, B = e1 and C = e2. For a given point X = (u, v), which doesn’t
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lie on the x- and y-axis and on the line y = 1 − x, one easily calculates the
intersections

R = lCX ∩ lAB =

(
u

1− v
, 0

)
,

P = lAX ∩ lBC =

(
u

u + v
,

v

u + v

)
,

Q = lBC ∩ lCA =

(
0,

v

1− u

)
.

Here we used the fact that the line through the points Z = (a, b) and X = (u, v)
is given by

lZX = {λ(a, b) + (1 − λ)(u, v) | λ ∈ R}.

Using the x- and y-coordinate formulas, we conclude that

AR

RB
·
BP

PC
·
CQ

QA

=
u/(1− v)

1− u/(1− v)
·
u/(u + v)− 1

0− u/(u + v)
·
v/(1− u)− 1

0− v/(1− u)

=
u

1− u− v
·
−v

−u
·
u + v − 1

−v
= 1.

Let us finally present the Theorem of Menelaus. The proof is Exercise 12.

Theorem 2.10 (Theorem of Menelaus). Let ∆ABC be a triangle and let l
be a line that crosses the extended sides lBC , lCA, lAB at the points P, Q, R,
respectively. Then

AR

RB
·
BP

PC
·
CQ

QA
= −1.

← →

21 November 2008

3 Projective Geometry

3.1 Points, homogeneous coordinates and Lines

Projective Geometry was discovered through artists’ attempts to capture the
three-dimensional world on a two-dimensional screen. In the early Middle Ages,
artists started to produce accurate reproductions of three dimensional scenes by
using methods of perspective. A prominent artist who studied the mathematical
background of this problem was Albrecht Dürer (1471-1528) from Germany.

The basic idea is to draw rays from a reference point p (position of the artist’s
eye) to points q of a three-dimensional object behind a screen π ∼= R2. These
rays intersect the screen at the image points f(q) ∈ π. Obviously, objects far
behind the screen have smaller images on the screen as the same objects closer
to the screen.

We can think of the map f as a central projection of R3 with respect to
the centre p to the screen π. From a mathematical point of view, f is also well
defined for points between the eye and the screen as well as for points behind

24



the eye. Any point q ∈ R3 is mapped to the screen π by taking the extended
straight line lpq and defining

f(q) = lp1 ∩ π.

However, the points in the plane E through p parallel to π don’t have images
in π. So we have

f : R3 \ E, f(q) := lpq ∩ π.

Thus we can identify lines l through p ∈ R3 with points on the screen π ∼= R2

with the exception of the lines in E ‖ π through p. One could consider those
lines to correspond to points which are infinitely far away on the screen π and
call them ideal points.

The projective plane RP 2 is obtained by choosing the reference point p =
0 ∈ R3, removing the screen π and only looking at all lines through p as Points
in RP 2. Since Points in RP 2 are actually lines in R3, we use a capital starting
letter ‘P’ to emphasize this distinction. Hence, the elements of RP 2 are projetive
points or Points. These Points become ordinary points when choosing a screen
π, but by such a choice we will always miss out the Points parallel to this screen,
which we refer to as ideal Points with respect to the screen π.

Klein viewpoint was that a geometry is given by a group of transformations
acting on a space of points (and preserving some geometric properties). We will
first have a closer look at the space of points, which we call a projective space
and will later introduce the corresponding group of projective transformations.

Let us already now state a significant difference between affine and projec-
tive space: In 2-dimensional affine space there is a unique line through two
different points, but not every two different lines intersect in a unique point.
Two different parallel lines don’t have an intersection point. In 2-dimensional
projective geometry, any two different lines intersect in a unique point. The
notion of parallelity does no longer exist in projective geometry.

Projective spaces can be defined for arbitrary fields F in any dimension
n ≥ 1. If you don’t feel comfortable with arbitrary fields, then simply think of
F as being R or C:

Definition 3.1. An n-dimensional projective spcae over a field F is the set
of all 1-dimensional subspaces of Fn+1 and is denoted by FPn. Any non-zero
vector v ∈ Fn+1 determines a Point [v] := F · v ∈ FPn.

It can be shown that CP 1 is topologically the same as the 2-sphere S2. But
in this course, we restrict ourselves mainly to the 2-dimensioal real projective
space RP 2. Note that every v = (v1, v2, v3) ∈ R3 \ {0} defines a straight line




v1

v2

v3



 := R · v ∈ RP 2.

We call [v1, v2, v3] the homogeneous coordinates of the projective point and we
have 


v1

v2

v3


 =




w1

w2

w3


←→ ∃λ ∈ R \ {0} : v = λw.
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Definition 3.2. A Line l ⊂ RP 2 (note the choice of the capital letter ‘L’ since
this is a projective line) is uniquely associated to a plane El ⊂ R3 through the
origin: all Points in l are the lines through the origin which lie in El.

Let l ⊂ RP 2 be a Line. If we choose a screen π ⊂ R3 which is not parallel
to El, then the Points of l intersecting π form a line in π, namely π ∩El. But l
contains one more Point, which has no image in π, namely the line through the
origin in El which is parallel to π. This Point is ideal with respect to the screen
π.

Next, we show that any two different Lines in RP 2 intersect:

Proposition 3.3. Any two different Lines l1, l2 ⊂ RP 2 intersect in a unique
Point.

Proof. The corresponding planes El1 , El2 ⊂ R3 have non-empty intersection
(namely the origin). Therefore, they must intersect in a whole line through the
origin. This line is the intersection Point of l1 and l2 in RP 2.

If we choose any screen π, then all Points of RP 2 have image points in π,
except for the lines through the origin which are parallel to π. Those lines lie
in a plane E parallel to π and therefore define a Line in RP 2. We refer to this
Line in RP 2 as the ideal Line with respect to the screen π. We can think of
RP 2 as the completion of π ∼= R2 by this ideal Line of Points. This completion
process yields the fact that any two different Lines intersect. If these Lines are
represented as parallel lines in π, their intersection Point is ideal with respect
to π, otherwise, their intersection Point is a point in π. The intersection of the
ideal Line with any other (non-ideal) Line l is precisely the ideal Point of l.

← →

24 November 2008

Proposition 3.4. Let [v], [w] ∈ RP 2 be two different Points. Then the Line l
through [v], [w] is given by



[z] ∈ RP 2 | det




v1 w1 z1

v2 w2 z2

v3 w3 z3



 = 0



 .

Proof. [v], [w] are two different Points if v = (v1, v2, v3) and w = (w1, w2, w3)
are two linear independent vectors in R3. The plane El ⊂ R3 through the origin
associated to the Line l is the span of v, w. Any non-vector z in this plane
defines a Point [z] on l and vice versa. A non-zero vector z is in the plane El if
and only if it is a linear combination of v, w, which is equivalent to

det




v1 w1 z1

v2 w2 z2

v3 w3 z3



 = 0.

Example. The Line l through [1, 0, 5] and [2, 6, 0] is given by the Points [z1, z2, z3]
satisfying

det




1 2 z1

0 6 z2

5 0 z3


 = 0.
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This transforms into
6z3 + 10z2 − 30z1 = 0,

or, after division by 2:
−15z1 + 5z2 + 3z3 = 0.

Thus,
l = {[z] ∈ RP 2 | −15z1 + 5z2 + 3z3 = 0}.

3.2 Higher dimensional projective spaces

Let us shortly look at higher dimensional real projective space RPn.

Definition 3.5. A k-dimensional subspace of RPn with k ≤ n is the set of all
one-dimensional subspaces in a (k + 1)-dimensional subspace of Rn+1. (n− 1)-
dimensional subspaces of RPn are called Hyperplanes or projective hyperplanes.

Lemma 3.6. Let E, F ⊂ RPn be two subspaces of dimension k and l, respec-
tively. If k + l − n ≥ 0, then E ∩ F is a subspace of dimension ≥ k + l − n. If
E∩F = ∅, then there exists a unique subspace of dimension k+ l+1, containing
both E and F .

Proof. E and F determine (k + 1)- and (l + 1)-dimensional subspaces Ê, F̂ of
Rn+1. By the dimension formula

dim Ê ∩ F̂ = dim (Ê) + dim (F̂ )− dim (Ê + F̂ )

≥ (k + 1) + (l + 1)− (n + 1) = (k + l + 1)− n.

So, Ê ∩ F̂ is a subspace of Rn+1 of dimension ≥ (k + l + 1)− n and determines
a projective subspace E ∩ F of dimension ≥ k + l − n.

If E ∩ F = ∅, then Ê ∩ F̂ = {0}, then

dim Ê + F̂ = dim (Ê) + dim (F̂ ) = (k + 1) + (l + 1) = k + l + 2,

and Ê + F̂ determines a (k + l + 1)-dimensional projective space, containing
both E and F .

The following corollary is a generalization of Proposition 3.3:

Corollary 3.7. In RP 2, any two different Lines intersect in a unique Point.
For any two different Points, there exists a unique Line containing both of them.
If RP 3, any two different Planes intersect in a Line and a Line not lying in a
Plane intersects that Plane in a unique Point.

3.3 Two proofs of Desargues’ Theorem

Next, we present a highlight, namely Desargues’ Theorem. We will give two
different proofs of this theorem. Beforehand, however, a little bit of notation:

Definition 3.8. Points A1, . . . , An ∈ RP 2 are collinear, if there is a Line con-
taining them. Lines l1, . . . , ln ⊂ RP 2 are concurrent, if they contain a common
Point, i.e., l1 ∩ · · · ∩ ln 6= ∅. Three non-collinear Points A, B, C ∈ RP 2 define
a triangle ∆ABC and AB, BC, CA its sides. Note that the sides of a triangle
are not only line segments but the whole projective lines.
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Theorem 3.9 (Desargues’ Theorem). Let ∆P0P1P2 and ∆Q0Q1Q2 be two tri-
angles in RP 2 such that all three different Lines P0Q0, P1Q1 and P2Q2 meet in
a common Point Z. Then the three intersection Points

S01 = P0P1 ∩Q0Q1, S02 = P0P2 ∩Q0Q2, S12 = P1P2 ∩Q1Q2

are collinear.

We present two proofs of this theorem: the first proof is algebraic and the
second proof is geometric.

Algebraic Proof. We have Pi 6= Qi, for otherwise they would not define a unique
Line PiQi. Let

Pi = [vi], Qi = [wi].

Then v0, v1, v2 and w0, w1, w2 are two sets of linear independent vectors. Let
Z = [u] = P0Q0 ∩ P1Q1 ∩ P2Q2. Then

0 6= u = α0v0 + β0w0 = α1v1 + β1w1 = α2v2 + β2w2

with (αi, βi) 6= 0. This implies

α0v0 − α1v1 = β1w1 − β0w0 6= 0,

since (αi, βi) 6= 0 and v0, v1 and w0, w1 are linear independent. Since [α0v0 −
α1v1] ∈ P0P1 and [β1w1 − β0w0] ∈ Q0Q1, we have

S01 = [α0v0 − α1v1].

← →

28 November 2008

Similarly, we derive

S02 = [α0v0 − α2v2], S12 = [α1v1 − α2v2].

Note that

det
(
α0v0 − α1v1 α0v0 − α2v2 α1v1 − α2v2

)
= 0,

since the first column of this matrix is equal to the second column minus the
third column. But this implies that the three points S01, S02, S12 are collinear.

Geometric Proof. We first think of the two triangles ∆P0P1P2 and ∆Q0Q1Q2

lying in two different Planes FP and FQ of RP 3. We assume that the Lines
Q0P0, Q1P1 and Q2P2 intersect in a Point Z ∈ RP 3. At the end of this proof,
we will explain how to bring all seven Points into one projective plane. Let
E ⊂ RP 3 be the Plane containing the two concurrent Lines Q0P0 and Q1P1.
By our above assumption P2 and Q2 don’t lie in E, but in the planes FP and
FQ. Let l = FP ∩ FQ be the intersection Line.

For i 6= j, the five Points Z, Pi, Qi, Pj , Qj lie in a common Plane, hence PiPj

and QiQj intersect in a Point Sij . Since PiPj lies in FP and QiQj lies in FQ,
the intersection Point Sij lies on the Line l = FP ∩ FQ. Hence, all three points
S01, S02 and S12 lie on the same line l and are thus collinear.

Now, assume that the Points P2, Q2 6∈ E are converging to limit Points inside
E, which finally yields the 2-dimensional statement by this limiting argument.
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3.4 Group of projective transformations

Now, we introduce the transformation group associated with Projective Geom-
etry. A linear map f : Rn+1 → Rn+1 with

f(v) = Av, A ∈ GL(n + 1, R),

has the property that f(λv) = λf(v), for all λ ∈ R. This implies that f induces
a map on RPn, namely

f([v]) := [f(v)].

Such a map is called a projective transformation.

Proposition 3.10. A map f : RPn → RPn, given by

f([v]) = [Av],

with A ∈ GL(n + 1, R) is called a projective transformation. The set of all
projective transformations forms a group under composition, the so-called group
of projective transformations P (RPn).

Proof. Let f, g : RPn → RPn be given by

f([v]) = [Av], g([v]) = [Bv], A, B ∈ GL(n + 1, R).

Then we have

f ◦ g([v]) = f([Bv]) = [(AB)v], AB ∈ GL(n + 1, R),

and the inverse of f is given by f−1([v] = [A−1v], since

f−1(f([v])) = [(A−1A)v] = [v].

Remark 4. Let A ∈ GL(n + 1, R) and λ 6= 0. Then f([v]) = [Av] and g([v] =
[(λA)v] define the same projective transformation. Therefore, we can identify
the group P (RPn) canonically with

GL(n + 1, R)/ ∼,

where A ∼ B if there is a λ 6= 0 such that A = λB. We also write

PGL(n + 1, R)

for GL(n + 1, R)/ ∼ and call this group the projective general linear group.

In order to state our next result on projective transformations, we first have
to introduce the notion of points in general position:

Definition 3.11. n+2 Points in RPn are called in general position if no n+1
Points of them lie in a projective hyperplane.
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Example. The Points

p0 = [1, 0, 0], p1 = [0, 1, 0], p2 = [0, 0, 1], p3 = [1, 1, 1] ∈ RP 2

are in general position, whereas the Points

p0, p1, p2, q3 = [0, 1, 1] ∈ RP 2

are not, since p1, p2, q3 lie on a common Line.

Theorem 3.12 (Fundamental Theorem of Projective Geometry). Let p0, . . . , pn+1

and q0, . . . , qn+1 be two sets of Points in general position in RPn. Then there
exists a unique projective transformation f : RPn → RPn such that

f(pi) = qi for i = 0, 1, . . . , n + 1.

← →

1 December 2008

Proof. Let pi = [vi] and qi = [wi]. v0, . . . , vn and w0, . . . , wn are both bases of
Rn+1, since both sets of points are in general position. This implies that we can
express vn+1 and wn+1 as linear combinations

vn+1 =
n∑

i=0

αivi, wn+1 =
n∑

i=0

βiwi.

Note that general position implies that all αi 6= 0 and also all βi 6= 0. (If
there were i with αi = 0, then v0, . . . , vi1 , vi+1, . . . , vn+1 were linear dependent,
contradicting to the assumption of general position.)

Define v′i = αivi for i = 0, . . . , n and v′n+1 = vn+1 and w′
i = βiwi for

i = 0, . . . , n and w′
n+1 = wn+1. This implies that v′0, . . . , v

′
n and w′

0, . . . , wn@
are both bases of Rn+1 and

v′n+1 =

n∑

i=0

v′i, w′
n+1 =

n∑

i=0

w′
i.

Now, choose a matrix A ∈ GL(n + 1, R) such that Av′i = w′
i for i = 0, . . . , n.

This implies that we also have

Av′n=1 = A(v′0 + · · ·+ v′n) = w′
0 + · · ·+ w′

n = w′
n+1,

and therefore the projective transformation f([v]) = [Av] satisfies

f(pi) = qi for i = 0, 1, . . . , n + 1.

Let us, finally, prove uniqueness: Let g[v] = [Bv] satisfy g(pi) = qi for
i = 0, . . . , n + 1. Then

Bv′i = λiw
′
i with λi 6= 0.

We have to show that λ0 = · · · = λn+1 = λ, since then B = λA and g = f .
Now,

Bv′n+1 = λn+1w
′
n+1 = λn+1w

′
0 + · · ·+ λn+1w

′
n

= B(v′0 + · · ·+ v′n)

= Bv′0 + · · ·+ Bv′n

= λ0w
′
0 + · · ·+ λnw′

n.

Since w′
0, . . . , w

′
n is a basis of Rn+1, we conclude from this that λ0 = . . . , =

λn = λn+1.
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3.5 Duality

For simplicity, we only discuss duality for RP 2.
Duality is a principle which translates every true statement about relations

between Points and Lines in RP 2 into a dual statement, which is automatically
also true.

We use the map “linear subspace of R3 7→ linear subspace of R3”, given by

U 7→ U⊥.

This map has the following properties:

(a) dimU⊥ = 3− dimU ,

(b) (U⊥)⊥ = U ,

(c) (U + V )⊥ = U⊥ ∩ V ⊥,

(d) (U ∩ V )⊥ = U⊥ + V ⊥.

Note that every linear subspace U ⊂ R3 with dimU = 1 defines a unique Point
in RP 2 and with dimU = 2 defines a unique Line in RP 2. The duality principle
is not the following (which we don’t prove):

Theorem 3.13 (Principle of Duality). A statement about finitely many Lines
and Points, inclusions, intersections and joinings remains true if we perform
the following replacements:

projective line ↔ projective point

inclusion ↔ containment

intersection ↔ joining

Example. Three non-collinear Points p0, p1, p2 determine a triangle in RP 2.
Their dual objects are three non-concurrent lines l0, l1, l2. They intersect again
in three Points Q0 = l1 ∩ l2, Q1 = l0 ∩ l2 and Q2 = l0 ∩ l1 which forms a dual
triangle. The dual statement to Desargues’ Theorem reads as follows:

Desargues: Given 2 triangles ∆P0P1P2 and ∆Q0Q1Q2. Assume that P0Q0,
P1Q1 and P2Q2 are concurrent.

Then the intersection Points PiQi ∩ PjQj are collinear.

Dual statement: Given two pairs of non-concurrent lines l0, l1, l2 and l′0, l
′
1, l

′
2.

Assume that l0 ∩ l′0, l1 ∩ l′1 and l2 ∩ l′2 are collinear.
Then the lines joining li ∩ l′i and lj ∩ l′j are concurrent.

One realizes that the dual statement to Desargues is an exchange of the
assumption and the conclusion of Desargues.

3.6 Cross Ratios

Now we investigate which properties are preserved under projective transforma-
tions. According to Klein’s viewpoint, these properties are called properties of
projective geometry. Recall that properties of affine geometry are

(a) being a straight line
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(b) parallelity of two lines

(c) ratios of lengths along a straight line

Property (a), is of course, also a property of projective geometry, whereas prop-
erties (b) and (c) are not. Other obvious properties of projective geometry are
collinearity and concurrency. We will show that the cross ratio of four Points
on a Line is also preserved under projective transformations and is therefore
another property of projective geometry.

Definition 3.14. Let p0, p1, p2, p3 ∈ RP 2 be four different collinear Points with
homogeneous coordinates pi = [vi], vi ∈ R3\{0}. Assume that

v2 = αv0 + βv1 and v3 = γv0 + δv1.

The cross-ratio [p0, p1; p2, p3] is then defined as

[p0, p1; p2, p3] =
β

α

/
δ

γ
. (3)

← →

5 December

Remarks 2. (a) One easily sees from the definition that the cross-ratio of four
different collinear Points can never be equals 0 and 1.

(b) For the cross-ratio to be well-defined, we have to show that the expres-
sion (3) is independent of the choice of homogeneous coordinates. If pi = [wi]
are different homogeneous coordinates, then we have wi = λivi with λi 6= 0 and

w2 = λ2v2 = λ2αv0 + λ2βv1 =
λ2

λ0
αw0 +

λ2

λ1
βw1,

w3 = λ3v3 = λ3γv0 + λ3δv1 =
λ3

λ0
γw0 +

λ3

λ1
δw1.

With these coefficients, the cross-ratio is given as

λ2

λ1
β

λ2

λ0
α

/ λ3

λ1
δ

λ3

λ0
γ

=
λ0

λ1

β

α

/
λ0

λ1

δ

γ
=

β

α

/
δ

γ
,

which proves that cross-ratios are well-defined.

The following theorem is almost trivial, but it shows that the cross-ratio is
an invariant of projective geometry.

Theorem 3.15. Let f : RP 2 → RP 2 be a projective transformation. Then we
have for any four different collinear Points p0, p1, p2, p3:

[f(p0), f(p1); f(p2), f(p3)] = [p0, p1; p2, p3],

i.e., cross-ratios are preserved under projective transformations.

Proof. Let pi = [vi] and f([v]) = Av with A ∈ GL(3, R). Then f(pi) = [Avi]
and if

v2 = αv0 + βv1 and v3 = γv0 + δv1,

then
Av2 = αAv0 + βAv1 and Av3 = γAv0 + δAv1.
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Therefore, we have

[f(p0), f(p1); f(p2), f(p3)] =
α

β

/
δ

γ
= [p0, p1; p2, p3].

Proposition 3.16. Let [p0, p1; p2, p3] = x ∈ R− {0, 1}. Then, exchanging two
of the four entries, we have

[p1, p0; p2, p3] = [p0, p1; p3, p2] =
1

x
(4)

and
[p0, p2; p1, p3] = [p3, p1; p2, p0] = 1− x. (5)

Proof. The equation (4) is straightforward. We only show that

[p0, p2; p1, p3] = 1− x.

The second formula in (5) is similar. Let pi = [vi] and

v2 = αv0 + βv1 and v3 = γv0 + δv1.

This implies that

v1 = −
α

β
v0 +

1

β
v2,

v3 = γv0 + δv1 = γv0 + δ

(
−

α

β
v0 +

1

β
v2

)

=
γβ − αδ

β
v0 +

δ

β
v2.

Thus, the cross-ratio [p0, p2; p1, p3] is

1
β

−α
β

/ δ
β

γβ−αδ
β

= −
1

α

/
δ

γβ − αδ
=

αδ − βγ

αδ
= 1 −

β

α

/
δ

γ
= 1 − x.

Next, we state some important results concerning cross-ratios:
The first result states that the cross-ratios of two sets of four Points in

perspective coincide:

Theorem 3.17. Let P0, P1, P2, P3 be four different Points on a Line lP and
Q0, Q1, Q2, Q3 be four different Points on a different Line lQ. Assume that the
four Lines PiQi for i = 0, 1, 2, 3 all meet in a common Point Z. Then we have

[P0, P1; P2, P3] = [Q0, Q1; Q2, Q3].

Proof. Note that the Points P0, P1, Q0, Q1 are in general position. Therefore
there is a unique projective transformation f : RP 2 → RP 2 with f(P0) = Q0,
f(Q0) = P0, f(P1) = Q1 and f(Q1) = P1. Since f2 fixes the four Points
P0, P1, Q0, Q1, we must have f2 = idRP 2 . Moreover, since f maps lP to lQ and
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vice versa, f must fix the intersection point I = lP ∩ lQ. Since f fixes the Lines
P0Q0 and P1Q1 (as sets), f must also fix the Point Z.

We show that f(Pi) = Qi for i = 2, 3: Assume that f(P2) = X with
X 6= Q2. Note that X ∈ lQ, since P2 ∈ lP and f maps lP to lQ. Moreover,
X 6= I. Note also that X 6= Q2 implies that P2X does not contain Z. Therefore,
P2X intersects the two lines P0Q0 and P1Q1 in two different Points R, S 6= Z.
Since f2 = id, f fixes the Lines P2X , P0Q0 and P1Q1 (as sets), and therefore,
fixes their intersection Points R, S. Note that Z 6∈ RS, since P2X 6= P2Q2.
Thus f fixes the four Points R, S, Z, I, which are in general position. Therefore,
we must have f = id, which is a contradiction to f(P0) = Q0 and the fact that
P0 6= Q0. Therefore, we conclude that f(P2) = Q2.

Similarly, we prove f(P3) = Q3 and conclude with Theorem 3.15 that

[Q0, Q1; Q2, Q3] = [f(P0), f(P1); f(P2), f(P3)] = [P0, P1; Q0, Q1].

Theorem 3.18. Let P0, P1, P2, P3 and P0, Q1, Q2, Q3 be two sets of different
collinear Points (on different Lines lP and lQ through P0) such that [P0, P1; P2, P3] =
[P0, Q1; Q2, Q3]. Then the Lines P1Q1, P2Q2 and P3Q3 are concurrent.

Proof. Let Z be the intersection Point of P1Q1 and P2Q2. Let X = lQ ∩ P3Z.
We have to show that X = Q3. Since P0, P1, P2, P3 and P0, Q1, Q2, X are in
perspective, we conclude from Theorem 3.17 and the assumption of the theorem
that

[P0, Q1; Q2, Q3] = [P0, P1; P2, P3] = [P0, Q1; Q2, X ].

Let P0 = [v0], Q1 = [v1], Q2 = [v2], Q3 = [v3] and X = [v′3]. Assume that

v2 = αv0 + βv1,

v3 = γv0 + δv1,

v′3 = γ′v0 + δ′v1.

Since the cross-ratios agree, we conclude that

β

α

/
δ

γ
=

β

α

/
δ′

γ′
,

which implies that there is λ 6= 0 such that γ′ = λγ and δ′ = λδ. Thus v′3 = λv3

and X = [v′3] = [v3] = Q2.

Finally, we use Theorems 3.17 and 3.18 to prove the following theorem:
← →

8 December 2008

Theorem 3.19 (Pappus’ Theorem). Let P0, P1, P2 be three Points on a Line
lP and Q0, Q1, Q2 be three Points on a different Line lQ. For 0 ≤ i < j ≤ 2, let
Sij = PiQj ∩QiPj. Then the three Points S01, S02 and S12 are collinear.

Proof. Let I = lP ∩ lQ. We also introduce the Points U = Q0P1 ∩ P0Q2 and
V = Q0P2 ∩ P1Q2. Let lU denote the Line Q0U and lV denote the Line Q2V .
Then the Points I, Q0, Q1, Q2 on lQ are in perspective from P0 with the Points
P1, Q0, S01, U on the Line lU . Thus, by Theorem 3.17,

[I, Q0; Q1, Q2] = [P1, Q0; S01, U ].
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The Points I, Q0, Q1, Q2 on lQ are in perspective from P2 with the Points
P1, V, S12, Q2 on the Line lV . Again, by Theorem 3.17, we have

[I, Q0; Q1, Q2] = [P1, V ; S12, Q2].

Both equations imply

[P1, Q0; S01, U ] = [P1, V ; S12, Q2],

where the four Points in the left cross-ratio lie on the Line lU and the four Points
on the right cross-ratio lie on the Line lV . By Theorem 3.18, we conclude
that the Lines Q0V , S01S12 and UQ2 are concurrent. This implies that the
intersection Point Q0V ∩UQ2 = Q0P2∩P0Q2 = S02 lies on the Line S01S12.

Remark 5. Assume that four different collinear Points A, B, C, D lie on a
screen π ⊂ R3. Thus, they lie also on a straight line in this screen. We state
without proof that the cross-ratio can also be calculated as

[A, B; C, D] =
AC

CB

/
AD

DB
,

where XY
UV denotes the ratio of the segments XY and UV introduced in Section

2.4 (and can be negative!).

3.7 Conics

Recall that a Line in RP 2 is given by a homogeneous equation of degree one,
i.e.,

l = {[x1, x2, x3] ∈ RP 2 | ax1 + bx2 + cx3 = 0}

with (a, b, c) ∈ R3\{0}. Homogeneous equations of degree two define conics:

Definition 3.20. A conic C ⊂ RP 2 is given by

C = {[x1, x2, x3] ∈ RP 2 | q(x1, x2, x3) = 0},

where q is a nontrivial homogeneous polynomial of degree two, i.e., of the form

q(x1, x2, x3) = ax2
1 + bx2

2 + cx2
3 + 2dx1x2 + 2ex1x3 + 2fx2x3,

with (a, b, c, d, e, f) 6= 0. Introducing the symmetric matrix

A :=




a d e
d b f
e f c



 ,

we can write
C = {[x] ∈ RP 2 | x⊤Ax = 0}.

We call C a non-singular conic if detA 6= 0.

Example. The name conic stems from the fact that the intersection of

{x ∈ R3\{0} | x⊤Ax = 0}
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with a screen π ⊂ R3 (an affine Euclidean plane not passing through the origin)
is a conic section. E.g., if we intersect

C̃1 := {x ∈ R3\{0} | x2
1 + x2

2 − x2
3 = 0}

with the affine plane π = {x ∈ R3 | x3 = 1}, we obtain a circle

C̃1 ∩ π = {(x1, x2, 1) ∈ R3 | x2
1 + x2

2 = 1}.

If we intersect
C̃2 := {x ∈ R3\{0} | x2

3 − x1x2 = 0}

with π, we obtain the hyperbola

C̃2 ∩ π = {(x1, x2, 1) ∈ R3 | x2 =
1

x1
}.

If we intersect
C̃3 := {x ∈ R3\{0} | x2

1 − x2x3 = 0}

with π, we obtain the parabola

C̃3 ∩ π = {(x1, x2, 1) ∈ R3 | x2 = x2
1}.

Let C := {[x] ∈ RP 2 | x⊤Ax = 0} be a conic and f : RP 2 → RP 2,
f([x]) = [Bx] with B ∈ GL(3, R) a projective transformation. The preimage
f−1(C) ⊂ RP 2 is then given by

f(C) = {[B−1x] ∈ RP 2 | x⊤Ax = 0}

= {[y] ∈ RP 2 | y⊤(B⊤AB)y = 0}.

Now, we know from Linear Algebra that we can find a suitable B ∈ GL(3, R)

such that Ã := B⊤AB is one of the following normal forms:

Ã =




1 0 0
0 0 0
0 0 0



 , y2
1 = 0 (C a Line),

Ã =




1 0 0
0 1 0
0 0 0


 , y2

1 + y2
2 = 0 (C a Point),

Ã =




1 0 0
0 −1 0
0 0 0


 , (y1 − y2)(y1 + y2) = 0 (C union of two Lines),

Ã =




1 0 0
0 1 0
0 0 1


 , y2

1 + y2
2 + y2

3 = 0 (C = ∅),

Ã =




1 0 0
0 1 0
0 0 −1


 , y2

1 + y2
2 − y2

3 = 0 (C 6= ∅, C non-singular).

The first three normal forms are singular, the fourth is empty, so there is only
one type of non-empty non-singular conic modulo projective transformations.
Henceforth, we only consider non-empty non-singular conics.
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Next, we want to introduce tangent lines, polar lines and poles of non-empty
non-singular conics.

Let

C̃ = {(x1, x2, x3) ∈ R3\{0} | q(x1, x2, x3) = 0} = q−1(0)\{0}.

At a point (x1, x2, x3) ∈ C̃, n = grad q(x1, x2, x3) is normal to C̃. So the tangent

plane of C̃ at this point is given by

n⊥ = {v ∈ R3 | 〈grad q(x), v〉 = 0} = {v ∈ R3 |
d

ds
|s=0q(x + tv) = 0}.

Since q(x) = x⊤Ax, this translates into

0 =
d

ds
|s=0(x + tv)⊤A(x + tv) = v⊤Ax + x⊤At = 2x⊤Av,

since A is a symmetric matrix. This motivates the following definition:

Definition 3.21. Let C ⊂ RP 2 be a non-empty non-singular conic and [x] ∈ C.
The tangent Line to C at [x] is given by

{[v] ∈ RP 2 | x⊤Av = 0}.

More generally, if [x] ∈ RP 2 is an arbitrary Point, the polar Line of [x] with
respect to C is given by

{[v] ∈ RP 2 | x⊤Av = 0}.

Conversely, if l ⊂ RP 2 is an arbitrary Line, then the pole of l with respect to
C is the Point [x] ∈ RP 2 determined by x⊤Av = 0 for all [v] ∈ l.

← →

12 December 2008

3.8 The Theorem of Pascal

This subsection is devoted to a beautiful result for non-singular conics, Pascal’s
Theorem. We start with the following lemma:

Lemma 3.22. A non-singular conic C ⊂ RP 2 cannot contain a whole projective
line l.

Proof. Applying a projective transformation we can assume that

l = {[x1, x2, x3] : x3 = 0}.

Let C = {[x] : x⊤Ax = 0} with

A =




a d e
d b f
e f c



 .

Then l ⊂ C would imply that

0 = (x1 x2 0)A




x1

x2

0



 = ax2
1 + bx2

2 + 2dx1x2 for all (x1, x2) ∈ R2\{0}.

But this would mean that a = b = d = 0 in contradiction to the assumption
that C is non-singular.
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Remark 6. Here we implicitely used the fact that the image of a non-singular
conic under a projective transformation is, again, a non-singular conic.

Recall the following definitions: Let C ⊂ RP 2 be a non-empty non-singular
conic, defined by

C = {[x] ∈ RP 2 | x⊤Ax = 0}

with A ∈ GL(3, R). Let [x] ∈ RP 2 and l ⊂ RP 2 a Point and a Line satisfying

x⊤Av = 0 for all [v] ∈ l.

Then [x] is called the (unique) pole of l and l is called the (unique) polar Line
of [x] with respect to C. In particular, if [x] ∈ C, then l is called the (unique)
tangent Line to C at [x].

We have the following facts:

Lemma 3.23. Let l ⊂ RP 2 be a Line and C ⊂ RP 2 a non-singular conic.
Then

(a) l ∩ C consists of at most two Points.

(b) l ∩ C is a single Point if and only if l is tangent to C.

(c) Assume that l ∩C = {P, Q} and lP and lQ are the tangents to C at P, Q.
Then R = lP ∩ lQ is the pole of l.

Proof. ad (a): Choose four Points P0, P1, P2, P3 ∈ RP 2 in general position such
that P0, P1 ∈ l and P1 6∈ C (this is possible because of Lemma 3.22). Apply
the projective transformation P0 7→ [1, 0, 0], P1 7→ [0, 1, 0], P2 7→ [0, 0, 1] and
P3 7→ [1, 1, 1]. By this we can assume that l = {[x1, x2, x3] | x3 = 0} and
[0, 1, 0] 6∈ C. Any P = [x1, x2, x3] ∈ l ∩ C satisfies then P = [x1, x2, 0], and
therefore

ax2
1 + bx2

2 + 2dx1x2 = 0, x1 6= 0,

i.e.,

b

(
x2

x1

)2

+ 2d
x2

x1
+ a = 0,

which (as a quadratic equation in x2/x1 has at most two solutions for x1/x1,
since the left side cannot be identically zero because C is non-singular.

ad (b): Assume first that l ∩ C is a single Point, i.e., l ∩ C = {[x]}. Choose
[y] ∈ l, [y] 6= [x]. Then we have, for each λ ∈ R,

[λx + y] ∈ l

and [λx + y] 6∈ C, since [λx + y] 6= [x], which means

0 6= (λx + y)⊤A(λx + y) = λ2 x⊤Ax︸ ︷︷ ︸
=0

+2λ(x⊤Ay) + y⊤Ay

= 2λ(x⊤Ay) + y⊤Ay for all λ ∈ R.

This implies that we must have

x⊤Ay = 0,
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i.e., [y] lies on the tangent Line of C at [x]. This shows that l coincides with
this tangent Line.

Conversely, let l be the tangent Line of C at [x]. Assume that [y] ∈ l ∩ C is
a Point different to [x]. Our goal is derive a contradiction. Every Point of l can
now be written as [λx + µy], and we have

(λx + µy)⊤A(λx + µy) = λ2x⊤Ax + 2λµx⊤Ay + µ2y⊤Ay.

Now, x⊤Ax = 0 since [x] ∈ C, x⊤Ay = 0, since [y] lies in the tangent Line of C
at [x], and y⊤Ay = 0, since [y] ∈ C. This would mean that

(λx + µy)⊤A(λx + µy) = 0,

i.e., the whole Line l would be contained in C. This, however, contradicts to
Lemma 3.22.

ad (c): We set P = [x] and Q = [y]. Since the Line l contains P, Q, we have

l = {[λx + µy] | (λ, µ) 6= 0}.

Note that P, Q ∈ C implies

x⊤Ax = y⊤Ay = 0.

The tangent Lines lP and lQ are given by

lP = {[z] | x⊤Az = 0},

lQ = {[z] | y⊤Az = 0}.

Therefore, the intersection Point R = [z] = lP ∩ lQ satisfies

x⊤Az = y⊤Az = 0.

But this implies that

(λx + µy)⊤Az = 0 for all (λ, µ) 6= 0.

Taking transposition, we obtain

z⊤A(λx + µy) = 0 for all (λ, µ) 6= 0,

i.e.,
z⊤Av = 0 for all [v] ∈ l.

This means precisely that R = [z] is the pole of l.

Lemma 3.24. Let C ⊂ RP 2 be a non-singular conic and P1, P2, P3 ∈ C be
three distinct Points. Let P4 be the intersection Point of the tangents at P1

and P2. Then P1, P2, P3, P4 are in general position and applying the projective
transformation

P1 7→ [1, 0, 0], P4 7→ [0, 1, 0], P2 7→ [0, 0, 1], P3 7→ [1, 1, 1],

the equation for C transforms into

x2
2 − x1x3.
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Proof. We first check that P1, P2, P3, P4 are in general position:

• P1, P2, P3 cannot be collinear because of Lemma 3.23(a).

• P1, P2, P4 cannot be collinear because otherwise P1P2 would be a tangent
at P1 with more than one intersection Point with C, contradicting to
Lemma 3.23(b).

• P1, P3, P4 cannot be collinear because otherwise P1P4 would be a tangent
at P1 with more than one intersection Point with C, contradicting to
Lemma 3.23(b).

• P2, P3, P4 cannot be collinear because otherwise P2P4 would be a tangent
at P1 with more than one intersection Point with C, contradicting to
Lemma 3.23(b).

This implies that there is a projective transformation with

P1 7→ [1, 0, 0], P4 7→ [0, 1, 0], P2 7→ [0, 0, 1], P3 7→ [1, 1, 1].

← →

15 December 2008

Applying this transformation to C, we conclude for the corresponding matrix

C =




a d e
d b f
e f c





that

(a) [1, 0, 0] ∈ C ⇔ (1 0 0)A




1
0
0


 = 0⇔ a = 0,

(b) [0, 0, 1] ∈ C ⇔ c = 0,

(c) [0, 1, 0] in tangent of C at [1, 0, 0]:

(1 0 0)A




0
1
0


 = 0⇔ d = 0,

(d) [0, 1, 0] in tangent of C at [0, 0, 1]:

(1 0 0)A




0
1
0



 = 0⇔ f = 0,

(e) [1, 1, 1] ∈ C ⇔ (1 1 1)




0 0 e
0 b 0
e 0 0


 = 0⇔ 2e + b = 0.

This implis that we have

A ∈ R ·




0 0 −1/2
0 1 0
−1/2 0 0


 ,
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which means that

C = {[x1, x2, x3] ∈ RP 2 | x2
2 − x1x3 = 0}.

Finally, we can state the Theorem of Pascal:

Theorem 3.25 (Pascal’s Theorem). Let C ⊂ RP 2 be a non-singular conic and
P1, P2, P3 and Q1, Q2, Q3 six distinct Points on C. Let

R1 = P2Q3 ∩ P3Q2, R2 = P1Q3 ∩ P3Q1, R3 = P1Q2 ∩Q1P2.

Then R1, R2 and R3 lie on a common Line.

Remark 7. Note that Pappus’ Theorem and Pascal’s Theorem are closely re-
lated. While Pascal’s Theorem is concerned with a non-singular conic, Pappus’
Theorem is an analogous statement in the singular case, i.e., when the conic
consists of two different Lines.

In the proof below we use the following two facts:

(a) If P = [x1, x2, x3] and Q = [y1, y2, y3] are two different Points in RP 2,
then the Line PQ is given by

PQ = {[z1, z2, z3] ∈ RP 2 | az1 + bz2 + cz3 = 0},

where

(a, b, c) = (x1, x2, x3)× (y1, y2, y3)

= (det

(
x2 x3

y2 y3

)
,− det

(
x1 x3

y1 y3

)
, det

(
x1 x2

y1 y2

)
.

(b) If l1 = {a1x1 + a2x2 + a3x3 = 0} and l2 = {b1x1 + b2x2 + b3x3} are
two different Lines in RP 2, then the intersection Point P = l1 ∩ l2 has the
homogeneous coordinates P = [z1, z2, z3] given by

(z1, z2, z3) = (a1, a2, a3)× (b1, b2, b3).

Proof. By Lemma 3.24 we can assume that

P1 = [1, 0, 0], Q1 = [0, 0, 1], Q2 = [1, 1, 1]

and S = [0, 1, 0], where S is the intersection Point of the tangents at P1 and Q1

and that C is given by
x2

2 − x1x3 = 0.

Since the tangent Q1S has the form {[x1, x2, x3] | x1 = 0}, by Lemma 3.23(b)
none of the Points P2, P3, Q3 has vanishing first homogeneous coordinate. There-
fore, there exist r, s, t ∈ R\{0} such that

P2 = [1, r, r2], P3 = [1, s, s2], Q3 = [1, t, t2],

and r, s, t are pairwise different and none of them equals 1. We have P1Q2 =
{x2 = x3} and Q1P2 = {−rx1 + x2 = 0} since

(0, 0, 1)× (1, r, r2) = (−r, 1, 0).
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This implies that
P1Q2 ∩Q1P2 = (1, r, r) = R3.

Similarly, we obtain

P1Q3 = {−tx2 + x3 = 0}, since (1, 0, 0)× (−1, t, t2) = (0,−t2, t),

Q1P3 = {−sx1 + x2 = 0}, since (0, 0, 1)× (1, s, s2) = (−s, 1, 0),

P2Q3 = {−rtx1 + (r + t)x2 − x3 = 0},

since (1, r, r2)× (1, t, t2) = (r − t)(−rt, r + t,−1),

Q2P3 = {−sx1 + (s + 1)x2 − x3 = 0},

since (1, 1, 1)× (1, s, s2) = (1− s)(−s, s + 1,−1).

This implies that R2 = P1Q3 ∩ Q1P3 = (1, s, st) and R3 = P1Q2 ∩ Q1P2 =
[z1, z2, z3] with

(z1, z2, z3) = (−rt, r+t,−1)×(−s, s+1,−1) = (1+s−r−t, s−rt, sr+st−rt−rst).

Now,



1 + s− r − t

s− rt
sr + st− rt− rst



 =




(1 − r) + (s− t)

s− rt
(1− r)st + r(s− t)



 = (1− r)




1
s
st



 + (s− t)




1
r
r



 ,

i.e., the three Points R1, R2 and R3 are collinear.

Corollary 3.26. Given five distinct Points P1 = [z1], . . . P5 = [z5] ∈ RP 2, no
four of them collinear, then there exists a unique conic C passing through them.

Proof. Existence: The five conditions

z⊤j




a d e
d b f
e f c


 zj = 0

yield five homogeneous linear equations for a, b, c, d, e, f . This implies that there
exists a non-trivial solution.

Uniqueness: If three Points, e.g., P1, P2, P3 are collinear, then C is singular
by Lemma 3.23(a) and consists of two Lines be the classification result for conics
(see bottom page 36). The second Line is uniquely determined by the remaining
two Points P4, P5.

Assume no three of the Points P1, . . . , P5 are collinear. Then any conic C
through P1, . . . , P5 is non-singular. For everty Line l through P1 not tangent
to C, the second intersection Point P6 of l ∩ C can be uniquely determined by
Pascal’s Theorem: Let Q1 = P4, Q2 = P5.

(a) Let R3 = P1Q2 ∩Q1P2.

(b) Let R2 = l ∩ P3Q1.

(c) Let lR = R2R3.

(d) Let R1 = lR ∩ P3Q2.

Finally, we obtain P6 as the intersection Point l∩P2R1. In this way, we construct
the unique conic C through the Points P1, . . . , P5.

42


