Riemannian Geometry IV

Problems, set 1.

Exercise 1. Let M be a differentiable manifold of dimension m and N be a differentiable manifold of dimension n. Show that the cartesian product

$$
M \times N:=\{(x, y) \mid x \in M, y \in N\}
$$

is a differentiable manifold of dimension $m+n$.
Exercise 2. Let $R>r>0$ and

$$
M:=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3} \mid\left(\sqrt{x_{1}^{2}+x_{2}^{2}}-R\right)^{2}+x_{3}^{2}=r^{2}\right\} .
$$

Show that the set M is the preimage of a regular value and, therefore, a 2-dimensional differentiable manifold. Since this set can be generated by a rotation of the circle $\left\{x \in \mathbb{R}^{3} \mid\left(x_{1}-R\right)^{2}+x_{3}^{2}=r^{2}, x_{2}=0\right\}$ in the x_{1}, x_{3}-plane around the x_{3}-axis, it is diffeomorphic to the cartesion product $S^{1} \times S^{1}$, where $S^{1}=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}=1\right\}$ is the unit circle. Give this diffeomorphism $\Phi: S^{1} \times S^{1} \rightarrow M$ explicitly.

Exercise 3. This exercise shows that the matrix group $S L(n, \mathbb{R})=\{A \in$ $M(n, \mathbb{R}) \mid \operatorname{det} A=1\}$ is a differentiable manifold, using Theorem 1.5.
(a) Let $f: \mathbb{R}^{k} \rightarrow \mathbb{R}$ be a homogeneous polynomial of degree $m \geq 1$. Prove Euler's relation

$$
\langle\operatorname{grad} f(x), x\rangle=m f(x),
$$

where

$$
\operatorname{grad} f(x)=\left(\frac{\partial f}{\partial x_{1}}(x), \frac{\partial f}{\partial x_{2}}(x), \ldots, \frac{\partial f}{\partial x_{k}}(x)\right)
$$

Hint: Differentiate $\lambda \mapsto f\left(\lambda x_{1}, \lambda x_{2}, \ldots, \lambda x_{k}\right)$ with respect to λ and use homogeneity.
(b) Let $f: \mathbb{R}^{k} \rightarrow \mathbb{R}$ be a homogeneous polynomial of degree $m \geq 1$. Show that every value $y \neq 0$ is a regular value of f.
(c) Use the fact that $\operatorname{det} A$ is a homogeneous polynomial in the entries of A in order to show that $S L(n, \mathbb{R})$ is a differentiable manifold.

