Riemannian Geometry IV

Problems, set 1.

Exercise 1. Let M be a differentiable manifold of dimension m and N be a differentiable manifold of dimension n. Show that the cartesian product

 $M \times N := \{ (x, y) \mid x \in M, y \in N \}$

is a differentiable manifold of dimension m + n.

Exercise 2. Let R > r > 0 and

$$M := \left\{ (x_1, x_2, x_3) \in \mathbb{R}^3 \mid \left(\sqrt{x_1^2 + x_2^2} - R \right)^2 + x_3^2 = r^2 \right\}.$$

Show that the set M is the preimage of a regular value and, therefore, a 2-dimensional differentiable manifold. Since this set can be generated by a rotation of the circle $\{x \in \mathbb{R}^3 \mid (x_1 - R)^2 + x_3^2 = r^2, x_2 = 0\}$ in the x_1, x_3 -plane around the x_3 -axis, it is diffeomorphic to the cartesion product $S^1 \times S^1$, where $S^1 = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$ is the unit circle. Give this diffeomorphism $\Phi: S^1 \times S^1 \to M$ explicitly.

Exercise 3. This exercise shows that the matrix group $SL(n, \mathbb{R}) = \{A \in M(n, \mathbb{R}) \mid \det A = 1\}$ is a differentiable manifold, using Theorem 1.5.

(a) Let $f : \mathbb{R}^k \to \mathbb{R}$ be a homogeneous polynomial of degree $m \ge 1$. Prove Euler's relation

$$\langle \operatorname{grad} f(x), x \rangle = mf(x),$$

where

grad
$$f(x) = \left(\frac{\partial f}{\partial x_1}(x), \frac{\partial f}{\partial x_2}(x), \dots, \frac{\partial f}{\partial x_k}(x)\right).$$

Hint: Differentiate $\lambda \mapsto f(\lambda x_1, \lambda x_2, \dots, \lambda x_k)$ with respect to λ and use homogeneity.

- (b) Let $f : \mathbb{R}^k \to \mathbb{R}$ be a homogeneous polynomial of degree $m \ge 1$. Show that every value $y \ne 0$ is a regular value of f.
- (c) Use the fact that det A is a homogeneous polynomial in the entries of A in order to show that $SL(n, \mathbb{R})$ is a differentiable manifold.