Riemannian Geometry IV

Problems, set 10.
Exercise 23.
(a) Show that

$$
\operatorname{Exp}\left(t\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right)\right)=\left(\begin{array}{cccc}
1 & t & t^{2} / 2 & t^{3} /(3!) \\
0 & 1 & t & t^{2} / 2 \\
0 & 0 & 1 & t \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Guess how the answer would be for the Lie group exponential of a $n \times n$-matrix of the same form (i.e., only entries 1 at the first upper diagonal).
(b) Use the fact (you don't need to prove this) that if A, B commute then

$$
\operatorname{Exp}(A) \operatorname{Exp}(B)=\operatorname{Exp}(A+B)
$$

in order to show that

$$
\operatorname{Exp}\left(t\left(\begin{array}{cccc}
c & 1 & 0 & 0 \\
0 & c & 1 & 0 \\
0 & 0 & c & 1 \\
0 & 0 & 0 & c
\end{array}\right)\right)=e^{t c}\left(\begin{array}{cccc}
1 & t & t^{2} / 2 & t^{3} /(3!) \\
0 & 1 & t & t^{2} / 2 \\
0 & 0 & 1 & t \\
0 & 0 & 0 & 1
\end{array}\right) .
$$

Exercise 24. Let $(G,\langle\cdot, \cdot\rangle)$ be a compact Lie group with left-invariant metric and let dvol denote the corresponding left-invariant volume form. Compactness implies that $\operatorname{vol}(G)<\infty$ (you don't need to prove this). Define an inner product $\langle\langle\cdot, \cdot\rangle\rangle_{e}$ at $e \in G$ by

$$
\left\langle\left\langle v_{1}, v_{2}\right\rangle\right\rangle_{e}:=\int_{G}\left\langle A d\left(g^{-1}\right) v_{1}, A d\left(g^{-1}\right) v_{2}\right\rangle_{e} \operatorname{dvol}(g)
$$

and let $\langle\langle\cdot, \cdot\rangle\rangle_{g}$ denote the left-invariant extension to a Riemannian metric on G. Show that $\langle\langle\cdot, \cdot\rangle\rangle_{g}$ is a bi-invariant Riemannian metric on G :
(a) Show first that

$$
\left\langle\left\langle A d\left(h^{-1}\right) v_{1}, A d\left(h^{-1}\right) v_{2}\right\rangle\right\rangle_{e}=\left\langle\left\langle v_{1}, v_{2}\right\rangle\right\rangle_{e}
$$

for all $h \in G$, by using the fact that left-invariance of dvol implies that

$$
\int_{G} f\left(L_{h}(g)\right) d \operatorname{vol}(g)=\int_{G} f(g) d v o l(g) .
$$

(You may use this fact without proof.)
(b) Use the fact $A d\left(h^{-1}\right)=D L_{h^{-1}}(h) D R_{h}(e)$ in order to show

$$
\left\langle\left\langle D R_{h}(e) v_{1}, D R_{h}(e) v_{2}\right\rangle\right\rangle_{h}=\left\langle\left\langle v_{1}, v_{2}\right\rangle\right\rangle_{e} \quad \text { for all } h \in G,
$$

i.e., the right-invariance of $\langle\langle\cdot, \cdot\rangle\rangle_{g}$.

Remark: The above averaging procedure is called the Weyl trick.
Exercise 25. Let $(G,\langle\cdot, \cdot\rangle)$ be a Lie group with a bi-invariant Riemannian metric. Let \mathfrak{g} denote the corresponding Lie algebra of left-invariant vector fields on G. Show for $X, Y \in \mathfrak{g}$ that

$$
\nabla_{X} Y=\frac{1}{2}[X, Y]
$$

Hint: Use the relation

$$
\begin{aligned}
& \quad\left\langle X, \nabla_{Z} Y\right\rangle= \\
& \frac{1}{2}(Z\langle X, Y\rangle+Y\langle X, Z\rangle-X\langle Y, Z\rangle+\langle Z,[X, Y]\rangle+\langle Y,[X, Z]\rangle-\langle X,[Y, Z]\rangle)
\end{aligned}
$$

and the fact that the metric is left-invariant to prove that $\left\langle X, \nabla_{Y} Y\right\rangle=$ $\langle Y,[X, Y]\rangle$ for $X, Y, Z \in \mathfrak{g}$. Use also the fact that the bi-invariance of the metric implies that

$$
\langle[U, X], V\rangle=-\langle U,[V, X]\rangle
$$

for $X, U, V \in \mathfrak{g}$ (see Corollary 4.10) in order to conclude that $\nabla_{Y} Y=0$ for all $Y \in \mathfrak{g}$.

> Merry Christmas and Happy New Year!!!

