Riemannian Geometry IV

Problems, set 11.

Exercise 26. As in the lecture, let G be a Lie group, $H \subset G$ be a closed subgroup, $\pi: G \rightarrow G / H$ be the canonical projection, $\langle\cdot, \cdot\rangle_{e}$ be an $A d(H)$ invariant inner product on $T_{e} G, V \subset T_{e} G$ be the orthogonal complement to $T_{e} H \subset T_{e} G$ with respect to $\langle\cdot, \cdot\rangle_{e}$, and Φ the restriction of $D \pi(e): T_{e} G \rightarrow$ $T_{e H} G / H$ to the subspace V. Prove the following statements:
(a) $T_{e} H=\operatorname{ker} D \pi(e)$. (You may use without proof that $D \pi(e): T_{e} G \rightarrow$ $T_{e H} G / H$ is surjective.)
(b) $\Phi: V \rightarrow T_{e H} G / H$ is an isomorphism.
(c) V is $\operatorname{Ad}(H)$-invariant. (Hint: The fact that $\operatorname{Ad}\left(h_{1}\right) \operatorname{Ad}\left(h_{2}\right)=\operatorname{Ad}\left(h_{1} h_{2}\right)$ might be useful.)

Exercise 27. In this exercise, we introduce a left-invariant Riemannian metric on the homogeneous space $S L(2, \mathbb{R}) / S O(2)$. Let $G=S L(2, \mathbb{R})$ and $H=S O(2)$.
(a) Show that $T_{e} H=\left\{\left.\left(\begin{array}{cc}0 & \alpha \\ -\alpha & 0\end{array}\right) \right\rvert\, \alpha \in \mathbb{R}\right\}$.
(b) For $A, B \in T_{e} G=\{C \in M(2, \mathbb{R}) \mid \operatorname{tr}(C)=0\}$ (where $\operatorname{tr}(C)$ denotes the trace of the matrix C), define

$$
\langle A, B\rangle_{e}:=2 \operatorname{tr}\left(A B^{\top}\right)
$$

Check that $\langle\cdot, \cdot\rangle_{e}$ is symmetric and $\operatorname{Ad}(H)$-invariant.
(c) Let $\left.V=\left\langle\left(\begin{array}{cc}\alpha & \beta \\ \beta & -\alpha\end{array}\right)\right| \alpha, \beta \in \mathbb{R}\right\} \subset T_{e} G$. Show that V is the orthogonal complement of $T_{e} H$ with respect to $\langle\cdot, \cdot\rangle_{e}$.
(d) Let $A=\left(\begin{array}{cc}\frac{1}{2} & 0 \\ 0 & -\frac{1}{2}\end{array}\right), B=\left(\begin{array}{cc}0 & \frac{1}{2} \\ \frac{1}{2} & 0\end{array}\right) \in V$. Check that A, B are an orthonormal basis of V with respect to $\langle\cdot, \cdot\rangle_{e}$.

Recall that we obtain the Riemannian metric on $S L(2, \mathbb{R}) / S O(2)$ via lefttranslation of $\langle\cdot, \cdot\rangle_{e}$ (as in the lectures). Recall also (see Example 17) that $S L(2, \mathbb{R}) / S O(2)$ is diffeomorphic tp the hyperbolic upper half plane $\mathbb{H}^{2}=$ $\{z \in \mathbb{C} \mid \operatorname{Im}(z)>0\}$ via

$$
S L(2, \mathbb{R}) / S O(2) \rightarrow \mathrm{H}^{2}, \quad A \cdot S O(2) \mapsto f_{A}(i)
$$

where $f_{A}(z)=\frac{a z+b}{c z+d}$ for $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$.
(e) Calculate the tangent vectors $v, w \in T_{i} \mathrm{H}^{2}$ corresponding to A, B in part (d) of this exercise.

This exercise shows that the Riemannian metric, constructed on $S L(2, \mathbb{R}) / S O(2)$, coincides with the hyperbolic metric on \mathbb{H}^{2}, given by

$$
\langle v, w\rangle_{z}=\frac{\langle v, w\rangle_{0}}{\operatorname{Im}(z)} .
$$

