Riemannian Geometry IV

Problems, set 12 (to be handed in on 31 January 2011 in the afternoon lecture).

Exercise 28. First Variation Formula of energy: Let $F:(-\epsilon, \epsilon) \times[a, b] \rightarrow M$ be a variation of a differentiable curve $c:[a, b] \rightarrow M$ with $c^{\prime}(t) \neq 0$ for all $t \in[a, b]$ and X be its variational vector field. Let $E:(-\epsilon, \epsilon)$ denote the associated energy, i.e.,

$$
E(s)=\frac{1}{2} \int_{a}^{b}\left\|\frac{\partial F}{\partial t}(s, t)\right\|^{2} d t
$$

Show that

$$
E^{\prime}(0)=\left\langle X(b), c^{\prime}(b)\right\rangle-\left\langle X(a), c^{\prime}(a)\right\rangle-\int_{a}^{b}\left\langle X(t), \frac{D}{d t} c^{\prime}(t)\right\rangle d t .
$$

Discuss the particular cases when
(i) c is a geodesic,
(ii) F is a proper variation,
(iii) c is a geodesic and F is a proper variation.

Let $c:[a, b] \rightarrow M$ be a curve connecting p and q (not necessarily parametrised proportional to arc length). Show the following statements:
(iv) $E^{\prime}(0)=0$ for every proper variation implies that c is a geodesic.
(v) Assume that c minimises the energy amongst all curves $\gamma:[a, b] \rightarrow M$ which connect p and q. Then c is a geodesic.

