Riemannian Geometry IV

Problems, set 13.
Exercise 29. Let (M, g) be a Riemannian manifold, $p \in M, \epsilon>0$ as in the Gauss-Lemma and $B_{\epsilon}(p):=\exp _{p}\left(B_{\epsilon}\left(0_{p}\right)\right)$. Let a curve $c:[a, b] \rightarrow B_{\epsilon}(p) \backslash\{p\}$ be given by

$$
c(s)=\exp _{p} r(s) v(s),
$$

where $v(s) \in S_{p} M=\left\{v \in T_{p} M \mid\|v\|_{p}=1\right\}$ for all $s \in[a, b]$ (polar coordinates). Show that the length $l(c)$ satisfies

$$
l(c) \geq|r(b)-r(a)|
$$

with equality if and only if $s \rightarrow v(s)$ is constant and r is monotone increasing or decreasing, i.e., the trace of c coincides with part of a radial geodesic.

Hint: Introduce $F(s, t):=\exp _{p}(t v(s))$. Then $c(s)=F(s, r(s))$. Use the Gauß-Lemma. This exercise is similar in spirit to Example 19 of the lecture.

Exercise 30. In this exercise we discuss a useful coordinate system, called geodesic normal coordinates.

Let (M, g) be a Riemannian manifold and $p \in M$. Let $\epsilon>0$ such that

$$
\exp _{p}: B_{\epsilon}\left(0_{p}\right) \rightarrow B_{\epsilon}(p) \subset M
$$

is a diffeomorphism. Let v_{1}, \ldots, v_{n} be a orthonormal base of $T_{p} M$. Then a local coordinate chart of M is given by $\varphi=\left(x_{1}, \ldots, x_{n}\right): B_{\epsilon}(p) \rightarrow V:=$ $\left\{w \in \mathbb{R}^{n}| | w \mid<\epsilon\right\}$ via

$$
\varphi^{-1}\left(x_{1}, \ldots, x_{n}\right)=\exp _{p}\left(\sum_{i=1}^{n} x_{i} v_{i}\right)
$$

The coordinate functions x_{1}, \ldots, x_{n} of φ are called geodesic normal coordinates.
(a) Let $g_{i j}$ be the first fundamental form in terms of the above coordinate system φ. Show that at $p \in M$:

$$
g_{i j}(p)=\delta_{i j}= \begin{cases}1 & \text { if } i=j \\ 0 & \text { if } i \neq j\end{cases}
$$

(b) Let $w=\left(w_{1}, \ldots, w_{n}\right) \in \mathbb{R}^{n}$ be arbitrarily and $c(t)=\varphi^{-1}(t w)$. Explain why $c(t)$ is a geodesic and deduce from this fact that

$$
\sum_{i, j} w_{i} w_{j} \Gamma_{i j}^{k}(c(t))=0,
$$

for all $1 \leq k \leq n$.
(c) Derive from (b) that all Christoffel symbols $\Gamma_{i j}^{k}$ of the chart φ vanish at the point $p \in M$.

Exercise 31. Let (M, g) be a n-dimensional Riemannian manifold and π : $T M \rightarrow M$ be the footpoint projection. For $v \in T_{p} M$, let

$$
\Psi: T_{v} T M \rightarrow T_{p} M \times T_{p} M, \quad X^{\prime}(0) \mapsto\left((\pi \circ X)^{\prime}(0), \frac{D}{d t} X(0)\right)
$$

be the isomorphism introduced in the lecture (here $X:(-\epsilon, \epsilon) \rightarrow T M$ is a curve in the tangent bundle representing a tangent vector of the $2 n$ dimensional manifold $T M$, and $\frac{D}{d t}$ denotes the covariant derivative along the projected curve $\pi \circ X:(-\epsilon, \epsilon) \rightarrow M)$. $S M:=\{v \in T M \mid\|v\|=1\}$ is a $2 n$ - 1-dimensional submanifold of $T M$ (you do not need to prove this). Show that

$$
\Psi\left(T_{v} S M\right)=\left\{\left(w_{1}, w_{2}\right) \in T_{p} M \times T_{p} M \mid w_{2} \perp v \text { w.r.t } g_{p}\right\} .
$$

