Riemannian Geometry IV

Problems, set 14.

Exercise 32. Let (M, g) be a connected Riemannian manifold, $d_{g}: M \times M \rightarrow[0, \infty)$ be the induced distance function, and Φ_{t} be the associated geodesic flow.
(a) Assume that $\left(M, d_{g}\right)$ is compact. Show that $\left(M, d_{g}\right)$ is complete.
(b) Assume that $\left(M, d_{g}\right)$ is complete. Conclude that the geodesic flow is defined on all of $T M$.

Exercise 33. Let (M, g) be a Riemannian manifold and R its curvature tensor. For (b) and (c) below you may also use the results of Proposition 6.2.
(a) Show that

$$
R(f X, Y) Z=f R(X, Y) Z
$$

for $f \in C^{\infty}(M)$ and X, Y, Z vector fields on M.
(b) Show that

$$
R(X, f Y) Z=f R(X, Y) Z
$$

for $f \in C^{\infty}(M)$ and X, Y, Z vector fields on M.
(c) Show that

$$
\langle R(X, Y) f Z, W\rangle=\langle f R(X, Y) Z, W\rangle
$$

for $f \in C^{\infty}(M)$ and X, Y, Z, W vector fields on M.
(d) Conclude from (a),(b),(c) that

$$
R(f X, g Y) h Z=f g h R(X, Y) Z
$$

for $f, g, h \in C^{\infty}(M)$ and X, Y, Z vector fields on M.

Exercise 34. Let (M, g) be a Riemannian manifold and R its curvature tensor. Prove the First Bianchi Identity:

$$
R(X, Y) Z+R(Y, Z) X+R(Z, X) Y=0
$$

for X, Y, Z vector fields on M, by reducing the equation to Jacobi's identity.
Exercise 35. Let (M, g) be a Riemannian manifold and $v_{1}, \ldots, v_{n} \in T_{p} M$ be an orthonormal basis. We know from Exercise 30 for the geodesic normal coordinates $\varphi: B_{\epsilon}(p) \rightarrow B_{\epsilon}(0) \subset \mathbb{R}^{n}$,

$$
\varphi^{-1}\left(x_{1}, \ldots, x_{n}\right)=\exp _{p}\left(\sum x_{i} v_{i}\right)
$$

that $\left.\frac{\partial}{\partial x_{i}}\right|_{p}=v_{i}$ and $\nabla_{\frac{\partial}{\partial x_{i}}} \frac{\partial}{\partial x_{j}}=0$. Define an orthonormal frame E_{1}, \ldots, E_{n} : $B_{\epsilon}(p) \rightarrow T M$ by Gram-Schmidt orthonormalisation, i.e.,

$$
\begin{aligned}
F_{1}(q) & :=\left.\frac{\partial}{\partial x_{1}}\right|_{q}, \quad E_{1}(q):=\frac{1}{\left\|F_{1}(q)\right\|} F_{1}(q) \\
& \vdots \\
F_{k}(q) & :=\left.\frac{\partial}{\partial x_{k}}\right|_{q}-\sum_{j=1}^{k-1}\left\langle\left.\frac{\partial}{\partial x_{k}}\right|_{q}, E_{j}(q)\right\rangle E_{j}(q), \quad E_{k}(q):=\frac{1}{\left\|F_{k}(q)\right\|} F_{k}(q), \\
& \vdots
\end{aligned}
$$

By construction, we have $E_{i}(p)=v_{i}$ and $E_{1}(q), \ldots, E_{n}(q)$ are orthonormal in $T_{q} M$ for all $q \in B_{\epsilon}(p)$. Show that

$$
\left(\nabla_{E_{i}} E_{j}\right)(p)=0
$$

for all $i, j \in\{1, \ldots, n\}$.
Hint: Prove first by induction over k that

$$
\begin{aligned}
\left(\nabla_{\frac{\partial}{\partial x_{i}}} F_{k}\right)(p) & =0, \\
\nabla_{\frac{\partial}{\partial x_{i}}}\left\langle F_{k}, F_{k}\right\rangle^{-1 / 2}(p) & =0, \\
\left(\nabla_{\frac{\partial}{\partial x_{i}}} E_{k}\right)(p) & =0,
\end{aligned}
$$

for all $i \in\{1, \ldots, n\}$.

