Riemannian Geometry IV

Problems, set 15.
Do Exercise 36 as homework for this week. The cumulative homework over the coming weeks will be collected and marked in a few weeks time.

Exercise 36. On a Riemannian manifold (M, g) let

$$
\begin{aligned}
\langle\operatorname{grad} f(p), X(p)\rangle & =X(f)(p), \\
(\operatorname{div} X)(p) & =\operatorname{tr}(\nabla \cdot X)(p)=\sum_{i=1}^{n}\left\langle\nabla_{e_{i}} X, e_{i}\right\rangle, \\
\Delta f(p) & =-\operatorname{div} \operatorname{grad} f(p),
\end{aligned}
$$

where $f \in C^{\infty}(M), X$ is a vector field on M, and $e_{1}, \ldots, e_{n} \in T_{p} M$ is an arbitrary orthonormal basis. Δ is called the Laplace-Beltrami operator of the Riemannian manifold. Let $U \subset M$ be an open set containing p, and $E_{1}, \ldots, E_{n}: U \rightarrow T M$ be an arbitrary orthonormal frame with $E_{i}(p)=e_{i}$. Show the following identities.
(a) We have grad $f(p)=\sum_{i=1}^{n} e_{i}(f) e_{i}$.
(b) We have $\operatorname{div}(f X)(p)=\langle\operatorname{grad} f(p), X(p)\rangle+f(p) \operatorname{div} X(p)$.
(c) We have $\Delta f(p)=-\sum_{i=1}^{n}\left(\left(e_{i}\left(E_{i}(f)\right)-\left(\nabla_{e_{i}} E_{i}\right)(f)\right)\right.$.
(d) We have $\Delta(f g)=f(\Delta g)+g(\Delta f)-2\langle\operatorname{grad} f, \operatorname{grad} g\rangle$.

Let (M, g) be from now on a compact Riemannian manifold. We introduce the following inner products on $C^{\infty}(M)$ and $\mathcal{X}(M)$:

$$
(f, g)=\int_{M} f(p) g(p) d \operatorname{vol}(p), \quad(X, Y)=\int_{M}\langle X(p), Y(p)\rangle d \operatorname{vol}(p)
$$

Use (without proof) Gauß Divergence Formula

$$
\int_{M} \operatorname{div} X(p) d \operatorname{vol}(p)=0
$$

to prove the following result:

$$
(\Delta f, g)=(\operatorname{grad} f, \operatorname{grad} g)=(f, \Delta g) .
$$

Exercise 37. A coordinate chart of the sphere $S^{2} \subset \mathbb{R}^{3}$ of radius $r>0$ is given by

$$
\varphi^{-1}\left(x_{1}, x_{2}\right)=\left(r \cos x_{1} \cos x_{2}, r \cos x_{1} \sin x_{2}, r \sin x_{1}\right) .
$$

(a) Calculate

$$
\nabla_{\frac{\partial}{\partial x_{1}}} \frac{\partial}{\partial x_{1}}, \nabla_{\frac{\partial}{\partial x_{1}}} \frac{\partial}{\partial x_{2}}, \nabla_{\frac{\partial}{\partial x_{2}}} \frac{\partial}{\partial x_{1}}, \nabla_{\frac{\partial}{\partial x_{2}}} \frac{\partial}{\partial x_{2}} .
$$

(b) Let R denote the Riemannian curvature tensor. Calculate $R\left(\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{2}}\right) \frac{\partial}{\partial x_{2}}$.
(c) How are the Riemannian curvature tensor and the Gaussian curvature in the case of surfaces related? Conclude from (b) that the Gaussian curvature of S_{r} is equal to $\frac{1}{r^{2}}$.

Exercise 38. Let (M, g) be a Riemannian manifold and R be the curvature tensor, defined by

$$
R(X, Y, Z, W):=\langle R(X, Y) Z, W\rangle
$$

Prove the Second Bianchi Identity:

$$
\nabla R(X, Y, Z, W, T)+\nabla R(X, Y, W, T, Z)+R(X, Y, T, Z, W)=0
$$

for X, Y, Z, W, T vector fields on M.
Hint: Use the orthonormal frame $E_{1}, \ldots, E_{n}: B_{\epsilon}(p) \rightarrow T M$ introduced in Exercise 35 (then you know that $\nabla_{E_{i}} E_{j}(p)=0$, which simplifies calculations considerably). For simplicity, let $e_{i}:=E_{i}(p)$ and $E_{i j}:=\left[E_{i}, E_{j}\right]$. Recall the definition of covariant derivative for tensors (see Exercise 19). Show first that

$$
\begin{aligned}
& \nabla R\left(e_{i}, e_{j}, e_{k}, e_{l}, e_{m}\right) \\
& \quad=\left\langle\nabla_{e_{m}} \nabla_{E_{k}} \nabla_{E_{l}} E_{i}-\nabla_{e_{m}} \nabla_{E_{l}} \nabla_{E_{k}} E_{i}-\nabla_{e_{m}} \nabla_{E_{k l}} E_{i}, e_{j}\right\rangle .
\end{aligned}
$$

Using this and the Riemannian curvature tensor, derive

$$
\begin{aligned}
\nabla R\left(e_{i}, e_{j}, e_{k}, e_{l}, e_{m}\right)+\nabla R\left(e_{i}, e_{j}, e_{l}, e_{m},\right. & \left.e_{k}\right)+\nabla R\left(e_{i}, e_{j}, e_{m}, e_{k}, e_{l}\right) \\
& =\left\langle\nabla_{\left[E_{m k}, E_{l}\right]+\left[E_{k l}, E_{m}\right]+\left[E_{l m}, E_{k}\right]} E_{i}, e_{j}\right\rangle
\end{aligned}
$$

which implies the desired result, by Jacobi's identity and linearity.

