Riemannian Geometry IV

Problems, set 16.

Do Exercise 40 as homework for this week. The cumulative homework over the coming weeks will be collected and marked in a few weeks time.

Exercise 39. Let (M, g) be a Riemannian manifold and $p \in M$ be fixed. Assume there exists a constant C such that $K(\Sigma)=C$ for all 2-dimensional subspaces $\Sigma \subset T_{p} M$. The goal of this exercise is to show that, for all $v_{1}, v_{2}, v_{3}, v_{4} \in T_{p} M$,

$$
\begin{equation*}
\left\langle R\left(v_{1}, v_{2}\right) v_{3}, v_{4}\right\rangle=C\left(\left\langle v_{1}, v_{4}\right\rangle\left\langle v_{2}, v_{3}\right\rangle-\left\langle v_{1}, v_{3}\right\rangle\left\langle v_{2}, v_{4}\right\rangle\right) . \tag{1}
\end{equation*}
$$

This goal can be established via the following steps. Let us, for simplicity, introduce the notions

$$
\begin{aligned}
\left(v_{1}, v_{2}, v_{3}, v_{4}\right) & :=\left\langle R\left(v_{1}, v_{2}\right) v_{3}, v_{4}\right\rangle \\
\left(v_{1}, v_{2}, v_{3}, v_{4}\right)^{\prime} & :=C\left(\left\langle v_{1}, v_{4}\right\rangle\left\langle v_{2}, v_{3}\right\rangle-\left\langle v_{1}, v_{3}\right\rangle\left\langle v_{2}, v_{4}\right\rangle\right) .
\end{aligned}
$$

(a) Check that $\left(v_{1}, v_{2}, v_{3}, v_{4}\right)^{\prime}$ has the same symmetries as $\left(v_{1}, v_{2}, v_{3}, v_{4}\right)$, namely
(i) $\left(v_{1}, v_{2}, v_{3}, v_{4}\right)^{\prime}=-\left(v_{2}, v_{1}, v_{3}, v_{4}\right)^{\prime}$
(ii) $\left(v_{1}, v_{2}, v_{3}, v_{4}\right)^{\prime}+\left(v_{2}, v_{3}, v_{1}, v_{4}\right)^{\prime}+\left(v_{3}, v_{1}, v_{2}, v_{4}\right)^{\prime}=0$
(iii) $\left(v_{1}, v_{2}, v_{3}, v_{4}\right)^{\prime}=-\left(v_{1}, v_{2}, v_{4}, v_{3}\right)^{\prime}$
(iv) $\left(v_{1}, v_{2}, v_{3}, v_{4}\right)^{\prime}=\left(v_{3}, v_{4}, v_{1}, v_{2}\right)^{\prime}$
(b) Show that

$$
\left(v_{1}, v_{2}, v_{3}, v_{1}\right)=\left(v_{1}, v_{2}, v_{3}, v_{1}\right)^{\prime}
$$

by starting with the expression $\left(v_{1}, v_{2}+v_{3}, v_{2}+v_{3}, v_{1}\right)$ and using the fact that $K(\Sigma)=C$ for all 2-dimensional subspaces $\Sigma \subset T_{p} M$.
(c) Conclude from (b) that

$$
\left(v_{1}, v_{2}, v_{3}, v_{4}\right)+\left(v_{4}, v_{2}, v_{3}, v_{1}\right)=\left(v_{1}, v_{2}, v_{3}, v_{4}\right)^{\prime}+\left(v_{4}, v_{2}, v_{3}, v_{1}\right)^{\prime}
$$

(d) Derive from (c) that

$$
\left(v_{1}, v_{2}, v_{3}, v_{4}\right)-\left(v_{1}, v_{2}, v_{3}, v_{4}\right)^{\prime}=\left(v_{3}, v_{1}, v_{2}, v_{4}\right)-\left(v_{3}, v_{1}, v_{2}, v_{4}\right)^{\prime}
$$

which means that the expression $\left(v_{1}, v_{2}, v_{3}, v_{4}\right)-\left(v_{1}, v_{2}, v_{3}, v_{4}\right)^{\prime}$ is invariant under cyclic permutation of the first three entries.
(e) Using Bianchi's first identity for the Riemannian curvature tensor and property (ii) of $(\cdot, \cdot, \cdot, \cdot)^{\prime}$, show that

$$
\left(v_{1}, v_{2}, v_{3}, v_{4}\right)-\left(v_{1}, v_{2}, v_{3}, v_{4}\right)^{\prime}=0
$$

which implies (??).

Exercise 40. Show that a manifold with constant sectional curvature is an Einstein manifold. Hint: Use the result of Exercise 39.

Exercise 41. Let (M, g) be a Riemannian manifold. For a tensor T let ∇T denote its covariant derivative, as defined in Exercise 19. T is called a parallel tensor, if we have $\nabla T=0$.
(a) Assume that $T_{1}, T_{2}: \mathcal{X} \times \mathcal{X} \rightarrow C^{\infty}(M)$ are parallel tensors. Show that then the tensor $T: \mathcal{X} \times \mathcal{X} \times \mathcal{X} \times \mathcal{X} \rightarrow C^{\infty}(M)$, defined as

$$
T\left(X_{1}, X_{2}, X_{3}, X_{4}\right)=T_{1}\left(X_{1}, X_{2}\right) T_{2}\left(X_{3}, X_{4}\right),
$$

is also parallel.
(b) Use (a) to show that $\nabla R^{\prime}=0$ for the tensor

$$
R^{\prime}(X, Y, Z, W)=\langle X, W\rangle\langle Y, Z\rangle-\langle X, Z\rangle\langle Y, W\rangle
$$

(c) Use Exercise 39 and (b) to show that all manifolds with constant sectional curvature have parallel Riemann curvature tensor

$$
R(X, Y, Z, W):=\langle R(X, Y) Z, W\rangle
$$

