Riemannian Geometry IV

Problems, set 18.

Exercise 44. (See also Example 38) For $r>0$, let $S_{r}^{2}:=\left\{x \in \mathbb{R}^{3} \mid\right.$ $\left.x_{1}{ }^{2}+x_{2}{ }^{2}+x_{3}{ }^{2}=r^{2}\right\}$ and $X:[-\pi / 2, \pi / 2] \rightarrow T S_{R}^{2}$ be a vector field along $c:[-\pi / 2, \pi / 2] \rightarrow S_{r}^{2}$ with $c(t)=(r \cos t, 0, r \sin t)$, defined by

$$
X(t):=(0, \cos t, 0) .
$$

Let $\frac{D}{d t}$ denote covariant derivative on S_{r}^{2} along c.
(a) Calculate $\frac{D}{d t} X(t)$ and $\frac{D^{2}}{d t^{2}} X(t)$, using the formula for the induced covariant derivative for a surface in \mathbb{R}^{3} (see Example 22).
(b) Show that X satisfies the Jacobi equation (using the results of Exercise 37).

Exercise 45. (Jacobi fields on manifold of constant curvature) Let M be a Riemannian manifold of constant sectional curvature K, and $c:[0, l] \rightarrow M$ be a geodesic satisfying $\left\|c^{\prime}\right\|=1$. Let $J:[0, l] \rightarrow T M$ be a orthogonal Jacobi field along c.
(a) Using Proposition 6.4, show that $R\left(J, c^{\prime}\right) c^{\prime}=K J$.
(b) Let $Z_{1}, Z_{2}:[0, l] \rightarrow M$ be parallel vector fields along c with $Z_{1}(0)=$ $J(0), Z_{2}(0)=\frac{D J}{d t}(0)$. Show that

$$
J(t)= \begin{cases}\cos (t \sqrt{K}) Z_{1}(t)+\frac{\sin (t \sqrt{K})}{\sqrt{K}} Z_{2}(t) & \text { if } K>0 \\ Z_{1}(t)+t Z_{2}(t) & \text { if } K=0 \\ \cosh (t \sqrt{-K}) Z_{1}(t)+\frac{\sinh (t \sqrt{-K})}{\sqrt{-K}} Z_{2}(t) & \text { if } K<0\end{cases}
$$

Exercise 46. Let M be a Riemannian manifold with non-positive sectional curvatures.
(a) Let $c:[a, b] \rightarrow M$ be a differentiable curve and J be a Jacobi field along c. Let $f(t)=\|J(t)\|^{2}$. Show that $f^{\prime \prime}(t) \geq 0$, i.e., f is a convex function.
(b) Derive from (a) that M does not admit conjugate points.

Exercise 47. (Jacobi fields and conjugate points on locally symmetric spaces) A Riemannian manifold (M, g) is called a locally symmetric space if $\nabla R=0$. Let (M, g) be an n-dimensional locally symmetric space and $c:[0, \infty) \rightarrow M$ be a geodesic with $p=c(0)$ and $v=c^{\prime}(0) \in T_{p} M$. Prove the following facts:
(a) Let X, Y, Z be parallel vector fields along c. Show that $R(X, Y) Z$ is also parallel.
(b) Let $K_{v}: T_{p} M \rightarrow T_{p} M$ be the curvature operator, defined by

$$
K_{v}(w)=R(w, v) v
$$

Show that K_{v} is symmetric, i.e.,

$$
\left\langle K_{v}\left(w_{1}\right), w_{2}\right\rangle=\left\langle w_{1}, K_{v}\left(w_{2}\right)\right\rangle
$$

for every pair of vectors $w_{1}, w_{2} \in T_{p} M$.
(c) Choose an orthonormal basis $w_{1}, \ldots, w_{n} \in T_{p} M$ that diagonalises K_{v}, i.e.,

$$
K_{v}\left(w_{i}\right)=\lambda_{i} w_{i}
$$

Let W_{1}, \ldots, W_{n} be the parallel vector fields along c with $W_{i}(0)=w_{i}$. Show that, for all $t \in[0, \infty)$,

$$
K_{c^{\prime}(t)}\left(W_{i}(t)\right)=\lambda_{i} W_{i}(t) .
$$

(d) Let $J(t)=\sum_{i} J_{i}(t) W_{i}(t)$ be a Jacobi field along c. Show that Jacobi's equation translates into

$$
J_{i}^{\prime \prime}(t)+\lambda_{i} J_{i}(t)=0, \quad \text { for } i=1, \ldots, n
$$

(e) Show that the conjugate points of p along c are given by $c\left(\pi k / \sqrt{\lambda_{i}}\right)$, where k is any positive integer and λ_{i} is a positive eigenvalue of K_{v}.

