Riemannian Geometry IV

Problems, set 2 (to be handed in on 25 October 2010 in the afternoon lecture).

Exercise 4. Let M be a differentiable manifold, $U \subset M$ open and $\varphi=$ $\left(x_{1}, \ldots, x_{n}\right): U \rightarrow V_{1} \subset \mathbb{R}^{n}, \psi=\left(y_{1}, \ldots, y_{n}\right): U \rightarrow V_{2} \subset \mathbb{R}^{n}$ be two coordinate charts. Show for $p \in U$:

$$
\left.\frac{\partial}{\partial x_{i}}\right|_{p}=\left.\sum_{j=1}^{n} \frac{\partial\left(y_{j} \circ \varphi^{-1}\right)}{\partial x_{i}}(\varphi(p)) \cdot \frac{\partial}{\partial y_{j}}\right|_{p},
$$

where $y_{j} \circ \varphi^{-1}: V_{1} \rightarrow \mathbb{R}$ and $\frac{\partial\left(y_{j} \circ \varphi^{-1}\right)}{\partial x_{i}}$ is the classical partial derivative in the coordinate direction x_{i} of \mathbb{R}^{n}. Hint: Blow $f \circ \varphi^{-1}$ up to the expression $f \circ \psi^{-1} \circ \psi \circ \varphi^{-1}$, and apply the chain rule.

Exercise 5. This exercise is useful to become familiar with the notions introduced in the lectures.

Let $S^{2}=\left\{x \in \mathbb{R}^{3} \mid\|x\|=1\right\}$ be the standard two-dimensional sphere and $\mathbb{R} P^{2}$ be the real projective plane and $\pi: S^{2} \rightarrow \mathbb{R} P^{2}$ be the canonical projection $p \mapsto p / \sim$. Let

$$
c:(-\epsilon, \epsilon) \rightarrow S^{2}, \quad c(t)=(\cos t \cos (2 t), \cos t \sin (2 t), \sin t)
$$

and

$$
f: \mathbb{R} P^{2} \rightarrow \mathbb{R}, \quad f\left(\mathbb{R}\left(z_{1}, z_{2}, z_{3}\right)^{\top}\right)=\frac{\left(z_{1}+z_{2}+z_{3}\right)^{2}}{z_{1}^{2}+z_{2}^{2}+z_{3}^{2}}
$$

(a) Let $\gamma=\pi \circ c$. Calculate $\gamma^{\prime}(0)(f)$.
(b) Let (φ, U) be the following coordinate chart of $\mathbb{R} P^{2}$: $U=\left\{\mathbb{R}\left(z_{1}, z_{2}, z_{3}\right)^{\top} \mid z_{1} \neq 0\right\} \subset \mathbb{R} P^{2}$ and

$$
\varphi: U \rightarrow \mathbb{R}^{2}, \quad \varphi\left(\mathbb{R}\left(z_{1}, z_{2}, z_{3}\right)^{\top}\right)=\left(\frac{z_{2}}{z_{1}}, \frac{z_{3}}{z_{1}}\right)
$$

Let $\varphi=\left(x_{1}, x_{2}\right)$. Express $\gamma^{\prime}(t)$ in the form

$$
\left.\alpha_{1}(t) \frac{\partial}{\partial x_{1}}\right|_{\gamma(t)}+\left.\alpha_{2}(t) \frac{\partial}{\partial x_{2}}\right|_{\gamma(t)} .
$$

