Riemannian Geometry IV

Problems, set 4.

Exercise 8. Let X, Y be two vector fields on \mathbb{R}^{3} defined by

$$
\begin{aligned}
X\left(x_{1}, x_{2}, x_{3}\right) & =\left(2 x_{3}-x_{2}\right) \frac{\partial}{\partial x_{1}}+x_{1} \frac{\partial}{\partial x_{2}}-2 x_{1} \frac{\partial}{\partial x_{3}} \\
Y\left(x_{1}, x_{2}, x_{3}\right) & =x_{3} \frac{\partial}{\partial x_{2}}-x_{2} \frac{\partial}{\partial x_{3}} .
\end{aligned}
$$

(a) Calculate the Lie bracket $[X, Y]$.
(b) Let $S^{2}=\left\{x \in \mathbb{R}^{3} \mid\|x\|=1\right\}$ be the standard unit sphere. Show that the restrictions of the vector fields X, Y to S^{2} are vector fields on S^{2}. Hint: You just have to show that, for every $x \in S^{2}, X(x)$ and $Y(x)$ lie in $T_{x} S^{2}$.
(c) Check that the restriction of the Lie bracket $[X, Y]$ to S^{2} is also a vector field on S^{2}.

Additional remark: In fact, the following general result is true (you don't have to prove it): Let X, Y be two vector fields on \mathbb{R}^{n} and $M \subset \mathbb{R}^{n}$ be a differentiable submanifold. Assume that the restrictions of X, Y to M are again vector fields on M. Then the Lie bracket of these restrictions within M coincides with the restriction of the Lie bracket of the original vector fields X, Y in \mathbb{R}^{n} to M.

Exercise 9. Show the following properties (a)-(c) of the Lie bracket:
(a) $[X, Y]=-[Y, X]$.
(b) $[a X+b Y, Z]=a[X, z]+b[Y, Z]$ for $a, b \in \mathbb{R}$.
(c) Jacobi's identity for Lie brackets:

$$
[[X, Y], Z]+[[Y, Z], X]+[[Z, X], Y]=0
$$

