Riemannian Geometry IV

Problems, set 6.

Exercise 14. Use the same coordinate chart of the torus T^{2} as in Exercise 12 and derive (with methods from Differential Geometry) that the Gaussian curvature $K: T^{2} \rightarrow \mathbb{R}$ is given by

$$
K\left(\varphi^{-1}\left(x_{1}, x_{2}\right)\right)=\frac{\cos x_{1}}{r\left(R+r \cos x_{1}\right)} .
$$

Explain geometrically why

$$
K\left(\varphi^{-1}\left(\pi / 2, x_{2}\right)\right)=K\left(\varphi^{-1}\left(3 \pi / 2, x_{2}\right)\right)=0 \quad \text { and } K\left(\varphi^{-1}\left(\pi, x_{2}\right)\right)<0 .
$$

Show by calculation that

$$
\int_{T^{2}} K d \mathrm{vol}=0
$$

Does this come as a surprise to you or do you have an explanation?
Exercise 15. Length calculations in the upper half plane model \mathbb{H}^{2} of the hyperbolic plane.
(a) Let $0<a<b$ and $c:[a, b] \rightarrow \mathbb{H}^{2}, c(t)=t i$. Calculate the arc-length reparametrization $\gamma:[0, \ln (b / a)] \rightarrow \mathbb{H}^{2}$ with the help of the sketch of proof of Proposition 2.16 in the lecture.
(b) Let $c:[0, \pi] \rightarrow \mathbb{H}^{2}$, given by

$$
c(t)=\frac{a i \cos t+\sin t}{-a i \sin t+\cos t},
$$

for some $a>1$. Calculate $L(c)$.

Exercise 16. We interpret \mathbb{R}^{2} as a two-dimensional Riemannian manifold with the standard Euclidean Riemannian metric. Find the length of the curve $c:[0,2 \pi] \rightarrow \mathbb{R}^{2}, c(t)=\left(\cos ^{3}(t), \sin ^{3}(t)\right)$. (The above picture illustrates the shape of the curve.)

Exercise 17. In this exercise, we derive the following explicit formula for the hyperbolic distance function in \mathbb{H}^{2} :

$$
\begin{equation*}
\sinh \left(\frac{1}{2} d\left(z_{1}, z_{2}\right)\right)=\frac{\left|z_{1}-z_{2}\right|}{2 \sqrt{\operatorname{Im}\left(z_{1}\right) \operatorname{Im}\left(z_{2}\right)}} . \tag{1}
\end{equation*}
$$

(a) Let $z_{1}, z_{2} \in \mathbb{H}^{2}$ with $\operatorname{Re}\left(z_{1}\right)=\operatorname{Re}\left(z_{2}\right)=0$. Check (??) for this case. You may use the well known distance (Example 19) in this case.
(b) Let $f_{A}(z)=\frac{a z+b}{c z+d}$ for $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}(2, \mathbb{R})$. Using the identity (from Exercise 11)

$$
\operatorname{Im}\left(f_{A}(z)\right)=\frac{\operatorname{Im}(z)}{|c z+d|^{2}}
$$

show that both left- and right-hand sides of (??) are invariant under f_{A}. You may use (without proof) the fact that isometries preserve the distance function.
(c) Let $z_{1}, z_{2} \in \mathbb{H}^{2}$ with $\operatorname{Re}\left(z_{1}\right)=\operatorname{Re}\left(z_{2}\right)=x \neq 0$. Using the map $f(z)=$ $z-x$, show the validity of (??) for the points z_{1}, z_{2}.
(d) Finally, let $z_{1}, z_{2} \in \mathbb{H}^{2}$ with $\operatorname{Re}\left(z_{1}\right) \neq \operatorname{Re}\left(z_{2}\right)$. Then, obviously, the (unique) geodesic through z_{1} and z_{2} is a Euclidean semicircle (and not a vertical line). Let $x \in \mathbb{R}$ be the centre of this Euclidean semicircle and $R>0$ its radius. Show that the map

$$
f(z)=\frac{z-(x+R)}{z-(x-R)}
$$

maps this semicircle to the positive imaginary axis. Again, using this map, conclude the validy of (??) for the points z_{1}, z_{2}.

