Riemannian Geometry IV

Problems, set 8 (to be handed in on 6 December 2010 in the afternoon lecture).

Exercise 19. Let M be a differentiable manifold, $\mathcal{X}(M)$ be the vector space of smooth vector fields on M, and ∇ be a general affine connection (we do not require a Riemannian metric on M and the "Riemannian property", and also not the "torsionless property" of the Levi-Civita connection). We say, a map

$$
A: \mathcal{X}(M) \times \cdots \times \mathcal{X}(M) \rightarrow C^{\infty}(M) \text { or } \mathcal{X}(M)
$$

is a tensor, if it is linear in each argument, i.e.,

$$
\begin{aligned}
& A\left(X_{1}, \cdots, f X_{i}+g Y_{i}, \cdots, X_{r}\right)= \\
& \quad f A\left(X_{1}, \cdots, X_{i}, \cdots, X_{r}\right)+g A\left(X_{1}, \cdots, Y_{i}, \cdots, X_{r}\right),
\end{aligned}
$$

for all $X, Y \in \mathcal{X}(M)$ and $f, g \in C^{\infty}(M)$.
(a) Show that

$$
\begin{aligned}
T: \mathcal{X}(M) \times \mathcal{X}(M) & \rightarrow \mathcal{X}(M), \\
T(X, Y) & =[X, Y]-\left(\nabla_{X} Y-\nabla_{Y} X\right)
\end{aligned}
$$

is a tensor (called the "torsion" of the manifold M).
(b) Let

$$
A: \underbrace{\mathcal{X}(M) \times \cdots \times \mathcal{X}(M)}_{r \text { factors }} \rightarrow C^{\infty}(M)
$$

be a tensor. The covariant derivative of A is a map

$$
\nabla A: \underbrace{\mathcal{X}(M) \times \cdots \times \mathcal{X}(M)}_{r+1 \text { factors }} \rightarrow C^{\infty}(M),
$$

defined by

$$
\begin{aligned}
& \nabla A\left(X_{1}, \ldots, X_{r}, Y\right)= \\
& \qquad Y\left(A\left(X_{1}, \ldots, X_{r}\right)\right)-\sum_{j=1}^{r} A\left(X_{1}, \ldots, \nabla_{Y} X_{j}, \ldots, X_{r}\right) .
\end{aligned}
$$

Show that ∇A is a tensor.
(c) Let (M, g) be a Riemannian manifold and $G: \mathcal{X}(M) \times \mathcal{X}(M) \rightarrow$ $C^{\infty}(M)$ be the Riemannian tensor, i.e., $G(X, Y)=\langle X, Y\rangle$. Calculate ∇G. What does it mean that $\nabla G \equiv 0$?

Exercise 20. Given a curve $c:[a, b] \rightarrow \mathbb{R}^{3}, c(t)=(f(t), 0, g(t))$ without self intersections and with $f(t)>0$ for all $t \in[a, b]$, let $M \subset \mathbb{R}^{3}$ denote the surface of revolution obtained by rotating this curve around the vertical Z-axis. Let ∇ denote the Levi-Civita connection of M. An almost global coordinate chart is given by $\varphi: U \rightarrow V:=(a, b) \times(0,2 \pi)$,

$$
\varphi^{-1}\left(x_{1}, x_{2}\right)=\left(f\left(x_{1}\right) \cos x_{2}, f\left(x_{1}\right) \sin x_{2}, g\left(x_{1}\right)\right) .
$$

(a) Calculate the Christoffel symbols of this coordinate chart and express

$$
\nabla_{\frac{\partial}{\partial x_{i}}} \frac{\partial}{\partial x_{j}}
$$

in terms of the basis $\frac{\partial}{\partial x_{k}}$.
(b) Let $\gamma_{1}(t)=\varphi^{-1}\left(x_{1}+t, x_{2}\right)$. $\frac{D}{d t}$ denotes covariant derivative along γ_{1}. Calculate

$$
\frac{D}{d t} \gamma_{1}^{\prime}
$$

Show that this vector field along γ_{1} vanishes if and only if the generating curve c of M is parametrized proportional to arc-length. Note that γ_{1} is obtained by rotation of c by a fixed angle. Derive from these facts that meridians of a surface of revolution are geodesics if they are parametrized propotional to arc length.
(c) Let $\gamma_{2}(t)=\varphi^{-1}\left(x_{1}, x_{2}+t\right)$. $\frac{D}{d t}$ denotes covariant derivative along γ_{2}. Calculate

$$
\frac{D}{d t} \gamma_{2}^{\prime}
$$

Show that this vector field along γ_{2} vanishes if and only if $f^{\prime}\left(x_{1}\right)=0$. Explain that this implies that parallels of a surface of revolution are geodesics if they have locally maximal or minimal radius.
(d) Assume that the generating curve c of the surface of revolution is arclength parametrized. Show in this particular case that

$$
\operatorname{vol}(M)=2 \pi \int_{a}^{b} f\left(x_{1}\right) d x_{1}
$$

