Riemannian Geometry IV

Problems, set 9.
Exercise 21. An almost global coordinate chart of the sphere $S^{2} \subset \mathbb{R}^{3}$ is given by $\varphi: U \rightarrow V=(-\pi / 2, \pi / 2) \times(0,2 \pi), U \subset S^{2}$,

$$
\varphi^{-1}\left(x_{1}, x_{2}\right)=\left(\cos x_{1} \cos x_{2}, \cos x_{1} \sin x_{2}, \sin x_{1}\right) .
$$

We want to determine the parallel vector fields along certain parallels of the sphere.
(a) Determine the Christoffel symbols with respect to this cordinate system. Hint: You may use the Solution of Exercise 20.
(b) Let X be the parallel vector field along $c_{1}:(-\pi, \pi) \rightarrow S^{2}, c_{1}(t)=$ $\varphi^{-1}(0, \pi+t)$ with $X(0)=\left.\frac{\partial}{\partial x_{1}}\right|_{c_{1}(0)}$. Calculate X explicitely in terms of the basis $\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{2}}$.
(c) For $a, b>0$ let

$$
A=\left(\begin{array}{cc}
0 & -a \\
b & 0
\end{array}\right)
$$

Show that

$$
\operatorname{Exp}(t A)=\left(\begin{array}{cc}
\cos (\sqrt{a b} t) & -\sqrt{\frac{a}{b}} \sin (\sqrt{a b} t) \\
\sqrt{\frac{b}{a}} \sin (\sqrt{a b} t) & \cos (\sqrt{a b} t)
\end{array}\right)
$$

(d) Let Y be the parallel vector field along $c_{2}:(-\pi, \pi) \rightarrow S^{2}, c_{2}(t)=$ $\varphi^{-1}(\pi / 4, \pi+t)$ with $Y(0)=\left.\frac{\partial}{\partial x_{1}}\right|_{c_{2}(0)}$. Calculate Y explicitely in terms of the basis $\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{2}}$.

Exercise 22. Let (M, g) be a Riemannian manifold and $c:[a, b] \rightarrow M$ be a differentiable curve. Let $\frac{D}{d t}$ denote the corresponding covariant derivative
along the curve c. Show the following: For any two parallel vector fields X, Y along c we have

$$
\frac{d}{d t}\langle X, Y\rangle \equiv 0
$$

i.e., the parallel transport $P_{c}: T_{c(a)} M \rightarrow T_{c(b)} M$ is a linear isometry.

Hint: I am happy if you try to prove this statement in the particular case that the vector fields X, Y along c have global extensions $\tilde{X}, \tilde{Y}: M \rightarrow T M$.

However, be aware that not every vector field along a curve may have a global extension; an extreme example is the case where $c:[a, b] \rightarrow M$ is a constant map $c(t)=p$ for all $t \in[a, b]$ and $X(t)$ is varying in $T_{p} M$. In this case, you need to write X, Y with respect to a basis of a coordinate system. Therefore, it is convenient to assume that $c([a, b])$ is contained in the domain of a coordinate chart. But this assumption is not a serious restriction, for otherwise one covers $c([a, b])$ with a finite sequence of covering coordinate charts and argues locally (see the solution sheet).

