## Riemannian Geometry IV

## Problems, set 9.

**Exercise 21.** An almost global coordinate chart of the sphere  $S^2 \subset \mathbb{R}^3$  is given by  $\varphi: U \to V = (-\pi/2, \pi/2) \times (0, 2\pi), U \subset S^2$ ,

 $\varphi^{-1}(x_1, x_2) = (\cos x_1 \cos x_2, \cos x_1 \sin x_2, \sin x_1).$ 

We want to determine the parallel vector fields along certain parallels of the sphere.

- (a) Determine the Christoffel symbols with respect to this cordinate system. **Hint:** You may use the Solution of Exercise 20.
- (b) Let X be the parallel vector field along  $c_1 : (-\pi, \pi) \to S^2$ ,  $c_1(t) = \varphi^{-1}(0, \pi + t)$  with  $X(0) = \frac{\partial}{\partial x_1}|_{c_1(0)}$ . Calculate X explicitly in terms of the basis  $\frac{\partial}{\partial x_1}, \frac{\partial}{\partial x_2}$ .
- (c) For a, b > 0 let

$$A = \begin{pmatrix} 0 & -a \\ b & 0 \end{pmatrix}$$

Show that

$$\operatorname{Exp}(tA) = \begin{pmatrix} \cos(\sqrt{abt}) & -\sqrt{\frac{a}{b}}\sin(\sqrt{abt}) \\ \sqrt{\frac{b}{a}}\sin(\sqrt{abt}) & \cos(\sqrt{abt}) \end{pmatrix}.$$

(d) Let Y be the parallel vector field along  $c_2 : (-\pi, \pi) \to S^2$ ,  $c_2(t) = \varphi^{-1}(\pi/4, \pi + t)$  with  $Y(0) = \frac{\partial}{\partial x_1}|_{c_2(0)}$ . Calculate Y explicitly in terms of the basis  $\frac{\partial}{\partial x_1}, \frac{\partial}{\partial x_2}$ .

**Exercise 22.** Let (M, g) be a Riemannian manifold and  $c : [a, b] \to M$  be a differentiable curve. Let  $\frac{D}{dt}$  denote the corresponding covariant derivative

along the curve c. Show the following: For any two parallel vector fields X, Y along c we have

$$\frac{d}{dt}\langle X, Y \rangle \equiv 0,$$

i.e., the parallel transport  $P_c: T_{c(a)}M \to T_{c(b)}M$  is a linear isometry.

**Hint:** I am happy if you try to prove this statement in the particular case that the vector fields X, Y along c have global extensions  $\tilde{X}, \tilde{Y} : M \to TM$ .

However, be aware that not every vector field along a curve may have a global extension; an extreme example is the case where  $c : [a, b] \to M$  is a constant map c(t) = p for all  $t \in [a, b]$  and X(t) is varying in  $T_pM$ . In this case, you need to write X, Y with respect to a basis of a coordinate system. Therefore, it is convenient to assume that c([a, b]) is contained in the domain of a coordinate chart. But this assumption is not a serious restriction, for otherwise one covers c([a, b]) with a finite sequence of covering coordinate charts and argues locally (see the solution sheet).