Riemannian Geometry IV

Solutions, set 1.

Exercise 1. Let $\left\{\left(U_{\alpha}, \varphi_{\alpha}\right)\right\}_{\alpha \in \mathcal{A}}$ and $\left\{\left(\widetilde{U}_{\beta}, \widetilde{\varphi}_{\beta}\right)\right\}_{\beta \in \widetilde{\mathcal{A}}}$ be atlases of M and N, respectively. Then an atlas of $M \times N$ is given by $\left\{\left(U_{\alpha} \times \widetilde{U}_{\beta}, \psi_{\alpha, \beta}\right)\right\}_{(\alpha, \beta) \in \mathcal{A} \times \tilde{\mathcal{A}}}$, where

$$
\psi_{\alpha, \beta}: U_{\alpha} \times \widetilde{U}_{\beta} \rightarrow V_{\alpha} \times \tilde{V}_{\beta} \subset \mathbb{R}^{m+n}
$$

with

$$
\psi_{\alpha, \beta}(x, y):=\left(\varphi_{\alpha}(x), \widetilde{\varphi}_{\beta}(y)\right) .
$$

The coordinate changes are

$$
\psi_{\gamma, \delta}^{-1} \circ \psi_{\alpha, \beta}(x, y)=\left(\varphi_{\gamma}^{-1} \circ \varphi_{\alpha}(x), \widetilde{\varphi}_{\delta}^{-1} \circ \widetilde{\varphi}_{\beta}(y)\right),
$$

which are obviously differentiable.
Finally, we have to check the Hausdorff property: Let $(x, y) \neq(z, w)$. This means that $x \neq z$ or $y \neq w$. Choose open neighbourhoods U_{x}, U_{z} of $x, z \in M$ which do not intersect if $x \neq z$. Choose open neighbourhoods $\widetilde{U}_{y}, \widetilde{U}_{w}$ of $y, w \in N$ which do not intersect if $y \neq w$. Then $U_{x} \times \widetilde{U}_{y} \subset$ $M \times N$ and $U_{z} \times \widetilde{U}_{w} \subset M \times N$ are open neighbourhoods of (x, y) and (z, w), respectively, and

$$
\left(U_{x} \times \widetilde{U}_{y}\right) \cap\left(U_{z} \times \widetilde{U}_{w}\right)=\emptyset
$$

Exercise 2. Let

$$
f: \mathbb{R}^{3} \rightarrow \mathbb{R}, \quad f\left(x_{1}, x_{2}, x_{3}\right)=\left(\sqrt{x_{1}^{2}+x_{2}^{2}}-R\right)^{2}+x_{3}^{2}
$$

We have to show that r^{2} is a regular value of f, then $M=f^{-1}\left(r^{2}\right)$ is a differentiable manifold of dimension $(3-1)=2$, by Theorem 1.5. We have
$D f\left(x_{1}, x_{2}, x_{3}\right)=2\left(\left(\sqrt{x_{1}^{2}+x_{2}^{2}}-R\right) \frac{x_{1}}{\sqrt{x_{1}^{2}+x_{2}^{2}}},\left(\sqrt{x_{1}^{2}+x_{2}^{2}}-R\right) \frac{x_{2}}{\sqrt{x_{1}^{2}+x_{2}^{2}}}, x_{3}\right)$.

Obviously, $\operatorname{Df}\left(x_{1}, x_{2}, x_{3}\right)$ is surjective if $x_{3} \neq 0$. Assume now that $x_{3}=0$. If $\left(x_{1}, x_{2}, 0\right) \in f^{-1}\left(r^{2}\right)$, then

$$
\sqrt{x_{1}^{2}+x_{2}^{2}}-R= \pm r
$$

i.e., $\sqrt{x_{1}^{2}+x_{2}^{2}}=R \pm r>0$, since $R>r$. This implies that $x_{1} \neq 0$ or $x_{2} \neq 0$, which means that either the first of second component of $\operatorname{Df}\left(x_{1}, x_{2}, x_{3}\right)$ is non-vanishing, i.e., $\operatorname{Df}\left(x_{1}, x_{2}, x_{3}\right): \mathbb{R}^{3} \rightarrow \mathbb{R}$ is surjective.

Finally, we have to construct the diffeomorphism Φ. We map the point $(x, y) \in S^{1}$ of the first factor of $S^{1} \times S^{1}$ to the point $(R+r x, 0, r y)$ in the x_{1}, x_{3}-plane, and rotate this with the point $(\tilde{x}, \tilde{y}) \in S^{1}$ of the second factor of $S^{1} \times S^{1}$ around the x_{3}-axis to obtain $(\tilde{x}(R+r x), \tilde{y}(R+r x), r y)$. Therefore,

$$
\Phi: S^{1} \times S^{1} \rightarrow M, \quad \Phi(x, y, \tilde{x}, \tilde{y})=(\tilde{x}(R+r x), \tilde{y}(R+r x), r y) .
$$

Exercise 3.

(a) Let $g(\lambda)=f\left(\lambda x_{1}, \ldots, \lambda x_{k}\right)=\lambda^{m} f\left(x_{1}, \ldots, x_{k}\right)$. Using the chain rule, we obtain

$$
\sum_{i=1}^{k} \frac{\partial f}{\partial x_{i}}(\lambda x) x_{i}=m \lambda^{m-1} f\left(x_{1}, \ldots, x_{k}\right)
$$

Choosing $\lambda=1$, the left side is equal to $\langle\operatorname{grad} f(x), x\rangle$ and the right side is $m f(x)$. This finishes the proof of (a).
(b) Let f be a homogeneous polynomial of degree $m \geq 1$ and $y \neq 0$. Let $x \in f^{-1}(y)$. Then we obtain with (a):

$$
\langle\operatorname{grad} f(x), x\rangle=m f(y) \neq 0
$$

This implies that $\operatorname{grad} f(x) \neq 0$, so $D f(x): \mathbb{R}^{k} \rightarrow \mathbb{R}$ is surjective for all $x \in f^{-1}(y)$. Therefore, $y \neq 0$ is a regular value.
(c) The group $S L(n, \mathbb{R}) \subset M(n, \mathbb{R})=\mathbb{R}^{n^{2}}$ ist equal to $f^{-1}(1)$, where $f(A)=\operatorname{det} A$. Now, f is a homogeneous polynomial of degree n in $\mathbb{R}^{n^{2}}$, so 1 is a regular value of f, by (b). Theorem 1.5 implies that $S L(n, \mathbb{R})=f^{-1}(1)$ is a differentiable manifold of dimension $n^{2}-1$.

