Riemannian Geometry IV

Solutions, set 1.

Exercise 1. Let $\{(U_{\alpha}, \varphi_{\alpha})\}_{\alpha \in \mathcal{A}}$ and $\{(\widetilde{U}_{\beta}, \widetilde{\varphi}_{\beta})\}_{\beta \in \widetilde{\mathcal{A}}}$ be atlases of M and N, respectively. Then an atlas of $M \times N$ is given by $\{(U_{\alpha} \times \widetilde{U}_{\beta}, \psi_{\alpha,\beta})\}_{(\alpha,\beta) \in \mathcal{A} \times \widetilde{\mathcal{A}}}$, where

$$\psi_{\alpha,\beta}: U_{\alpha} \times \widetilde{U}_{\beta} \to V_{\alpha} \times \widetilde{V}_{\beta} \subset \mathbb{R}^{m+r}$$

with

$$\psi_{\alpha,\beta}(x,y) := (\varphi_{\alpha}(x), \widetilde{\varphi}_{\beta}(y)).$$

The coordinate changes are

$$\psi_{\gamma,\delta}^{-1} \circ \psi_{\alpha,\beta}(x,y) = (\varphi_{\gamma}^{-1} \circ \varphi_{\alpha}(x), \widetilde{\varphi}_{\delta}^{-1} \circ \widetilde{\varphi}_{\beta}(y)).$$

which are obviously differentiable.

Finally, we have to check the Hausdorff property: Let $(x, y) \neq (z, w)$. This means that $x \neq z$ or $y \neq w$. Choose open neighbourhoods U_x, U_z of $x, z \in M$ which do not intersect if $x \neq z$. Choose open neighbourhoods $\widetilde{U}_y, \widetilde{U}_w$ of $y, w \in N$ which do not intersect if $y \neq w$. Then $U_x \times \widetilde{U}_y \subset M \times N$ and $U_z \times \widetilde{U}_w \subset M \times N$ are open neighbourhoods of (x, y) and (z, w), respectively, and

$$(U_x \times \widetilde{U}_y) \cap (U_z \times \widetilde{U}_w) = \emptyset.$$

Exercise 2. Let

$$f : \mathbb{R}^3 \to \mathbb{R}, \quad f(x_1, x_2, x_3) = \left(\sqrt{x_1^2 + x_2^2} - R\right)^2 + x_3^2.$$

We have to show that r^2 is a regular value of f, then $M = f^{-1}(r^2)$ is a differentiable manifold of dimension (3-1) = 2, by Theorem 1.5. We have

$$Df(x_1, x_2, x_3) = 2\left(\left(\sqrt{x_1^2 + x_2^2} - R\right)\frac{x_1}{\sqrt{x_1^2 + x_2^2}}, \left(\sqrt{x_1^2 + x_2^2} - R\right)\frac{x_2}{\sqrt{x_1^2 + x_2^2}}, x_3\right).$$

Obviously, $Df(x_1, x_2, x_3)$ is surjective if $x_3 \neq 0$. Assume now that $x_3 = 0$. If $(x_1, x_2, 0) \in f^{-1}(r^2)$, then

$$\sqrt{x_1^2 + x_2^2} - R = \pm r,$$

i.e., $\sqrt{x_1^2 + x_2^2} = R \pm r > 0$, since R > r. This implies that $x_1 \neq 0$ or $x_2 \neq 0$, which means that either the first of second component of $Df(x_1, x_2, x_3)$ is non-vanishing, i.e., $Df(x_1, x_2, x_3) : \mathbb{R}^3 \to \mathbb{R}$ is surjective.

Finally, we have to construct the diffeomorphism Φ . We map the point $(x, y) \in S^1$ of the first factor of $S^1 \times S^1$ to the point (R + rx, 0, ry) in the x_1, x_3 -plane, and rotate this with the point $(\tilde{x}, \tilde{y}) \in S^1$ of the second factor of $S^1 \times S^1$ around the x_3 -axis to obtain $(\tilde{x}(R+rx), \tilde{y}(R+rx), ry)$. Therefore,

$$\Phi: S^1 \times S^1 \to M, \quad \Phi(x, y, \tilde{x}, \tilde{y}) = (\tilde{x}(R + rx), \tilde{y}(R + rx), ry).$$

Exercise 3.

(a) Let $g(\lambda) = f(\lambda x_1, \dots, \lambda x_k) = \lambda^m f(x_1, \dots, x_k)$. Using the chain rule, we obtain

$$\sum_{i=1}^{k} \frac{\partial f}{\partial x_i}(\lambda x) x_i = m \lambda^{m-1} f(x_1, \dots, x_k).$$

Choosing $\lambda = 1$, the left side is equal to $\langle \operatorname{grad} f(x), x \rangle$ and the right side is mf(x). This finishes the proof of (a).

(b) Let f be a homogeneous polynomial of degree $m \ge 1$ and $y \ne 0$. Let $x \in f^{-1}(y)$. Then we obtain with (a):

$$\langle \operatorname{grad} f(x), x \rangle = m f(y) \neq 0.$$

This implies that $\operatorname{grad} f(x) \neq 0$, so $Df(x) : \mathbb{R}^k \to \mathbb{R}$ is surjective for all $x \in f^{-1}(y)$. Therefore, $y \neq 0$ is a regular value.

(c) The group $SL(n,\mathbb{R}) \subset M(n,\mathbb{R}) = \mathbb{R}^{n^2}$ ist equal to $f^{-1}(1)$, where $f(A) = \det A$. Now, f is a homogeneous polynomial of degree n in \mathbb{R}^{n^2} , so 1 is a regular value of f, by (b). Theorem 1.5 implies that $SL(n,\mathbb{R}) = f^{-1}(1)$ is a differentiable manifold of dimension $n^2 - 1$.