Riemannian Geometry IV

Solutions, set 10 .
Exercise 23. (a) Let $A=\left(\begin{array}{cccc}0 & t & 0 & 0 \\ 0 & 0 & t & 0 \\ 0 & 0 & 0 & t \\ 0 & 0 & 0 & 0\end{array}\right)$. We have

$$
A^{2}=\left(\begin{array}{cccc}
0 & 0 & t^{2} & 0 \\
0 & 0 & 0 & t^{2} \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), \quad A^{3}=\left(\begin{array}{cccc}
0 & 0 & 0 & t^{3} \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), \quad A^{k}=0 \quad \text { for all } k \geq 4
$$

So the power series $\operatorname{Exp}(A)$ terminates after 4 terms and we conclude that

$$
\operatorname{Exp}(A)=I+A+\frac{1}{2} A^{2}+\frac{1}{3!} A^{3}=\left(\begin{array}{cccc}
1 & t & t^{2} / 2 & t^{3} /(3!) \\
0 & 1 & t & t^{2} / 2 \\
0 & 0 & 1 & t \\
0 & 0 & 0 & 1
\end{array}\right)
$$

(b) Let $B=t c I$, where I denotes the 4×4 identity matrix and let A be as in (a). Then we have $\operatorname{Exp}(B)=e^{t c} I$ and A and B commute. This implies that

$$
\begin{aligned}
\operatorname{Exp}\left(t\left(\begin{array}{cccc}
c & 1 & 0 & 0 \\
0 & c & 1 & 0 \\
0 & 0 & c & 1 \\
0 & 0 & 0 & c
\end{array}\right)\right) & =\operatorname{Exp}(A+B) \\
& =\operatorname{Exp}(B) \operatorname{Exp}(A)=e^{t c}\left(\begin{array}{cccc}
1 & t & t^{2} / 2 & t^{3} /(3!) \\
0 & 1 & t & t^{2} / 2 \\
0 & 0 & 1 & t \\
0 & 0 & 0 & 1
\end{array}\right) .
\end{aligned}
$$

Exercise 24. (a) We have

$$
\begin{aligned}
\left\langle\left\langle A d\left(h^{-1}\right) v_{1}, A d\left(h^{-1}\right) v_{2}\right\rangle\right\rangle_{e}= & \int_{G}\left\langle A d\left(g^{-1}\right) \operatorname{Ad}\left(h^{-1}\right) v_{1}, \operatorname{Ad}\left(g^{-1}\right) \operatorname{Ad}\left(h^{-1}\right) v_{2}\right\rangle_{e} d v o l(g) \\
& =\int_{G}\left\langle\operatorname{Ad}\left((h g)^{-1}\right) v_{1}, \operatorname{Ad}\left((h g)^{-1}\right) v_{2}\right\rangle_{e} d v o l(g) .
\end{aligned}
$$

Let $f: G \rightarrow \mathbb{R}, f(g)=\left\langle A d\left(g^{-1}\right) v_{1}, A d\left(g^{-1}\right) v_{2}\right\rangle_{e}$. Then we have

$$
\begin{aligned}
&\left\langle\left\langle A d\left(h^{-1}\right) v_{1}, A d\left(h^{-1}\right) v_{2}\right\rangle\right\rangle_{e}=\int_{G} f(h g) d v o l(g)=\int_{G} f(g) d \operatorname{vol}(g) \\
&=\int_{G}\left\langle A d\left(g^{-1}\right) v_{1}, \operatorname{Ad}\left(g^{-1}\right) v_{2}\right\rangle_{e} \operatorname{dvol}(g)=\left\langle\left\langle v_{1}, v_{2}\right\rangle\right\rangle_{e}
\end{aligned}
$$

(b) We have

$$
\begin{aligned}
\left\langle\left\langle D R_{h}(e) v_{1}, D R_{h}(e) v_{2}\right\rangle\right\rangle_{h}=\langle D & \left.\left.L_{h^{-1}}(h) D R_{h}(e) v_{1}, D L_{h^{-1}}(h) D R_{h}(e) v_{2}\right\rangle\right\rangle_{e} \\
& \left.=\left\langle A d\left(h^{-1}\right) v_{1}, A d\left(h^{-1}\right) v_{2}\right\rangle\right\rangle_{e}=\left\langle\left\langle v_{1}, v_{2}\right\rangle\right\rangle_{e}
\end{aligned}
$$

Exercise 25. The relation in the hint implies that

$$
\begin{aligned}
& \left\langle X, \nabla_{Y} Y\right\rangle= \\
& \frac{1}{2}(Y\langle X, Y\rangle+Y\langle X, Y\rangle-X\langle Y, Y\rangle+\langle Y,[X, Y]\rangle+\langle Y,[X, Y]\rangle-\langle X,[Y, Y]\rangle)= \\
& \frac{1}{2}(\langle Y,[X, Y]\rangle+\langle Y,[X, Y]\rangle)
\end{aligned}
$$

since the inner product of two left invariant vector fields is constant and, therefore, the first three derivatives of the right hand side of the relation vanish. Moreover, we have $[Y, Y]=0$. So we conclude that

$$
\left\langle X, \nabla_{Y} Y\right\rangle=\langle Y,[X, Y]\rangle .
$$

The bi-invariance implies that

$$
\langle[Y, X], Y\rangle=-\langle Y,[Y, X]\rangle=-\langle[Y, X], Y\rangle
$$

so $\langle[Y, X], Y\rangle=0$. This gives us $\left\langle X, \nabla_{Y} Y\right\rangle=0$ for all left invariant X, so we have $\nabla_{Y} Y=0$ for all left invariant Y. Using this fact, we calculate $0=\nabla_{X+Y} X+Y=\nabla_{X} Y+\nabla_{Y} X+\nabla_{X} X+\nabla_{Y} Y=\nabla_{X} Y+\nabla_{Y} X=2 \nabla_{X} Y-[X, Y]$.
Division by two finally yields

$$
\nabla_{X} Y=\frac{1}{2}[X, Y]
$$

