Riemannian Geometry IV

Solutions, set 11.

Exercise 26. Let $N=\operatorname{dim} G$ and $n=\operatorname{dim} H$.
(a) We first show that $T_{e} H \subset \operatorname{ker} D \pi(e)$. Let $v \in T_{e} H$. Then there exists a curve $c:(-\epsilon, \epsilon) \rightarrow H$ such that $c(0)=e$ and $c^{\prime}(0)=v$. The image curve $\pi \circ c:(-\epsilon, \epsilon) \rightarrow G / H$ is constant because of $c(t) H=e H$ for all $t \in(-\epsilon, \epsilon)$. This implies that

$$
D \pi(e)(v)=\left.\frac{d}{d t}\right|_{t=0} \pi \circ c(t)=0 \in T_{e H} G / H .
$$

$D \pi(e): T_{e} G \rightarrow T_{e H} G / H$ is surjective, and we have by the dimension formula:

$$
\operatorname{dimker} D \pi(e)+\operatorname{dim} T_{e H} G / H=\operatorname{dim} T_{e} G
$$

i.e., $\operatorname{dimker} D \pi(e)=N-(N-n)=n$. Since $\operatorname{dim} T_{e} H=n$, we conclude that $T_{e} H=\operatorname{ker} D \pi(e)$.
(b) Note first that $\operatorname{dim} V=\operatorname{dim} T_{e} G-\operatorname{dimker} D \Pi(e)=N-n$ and $\operatorname{dim} T_{e H} G / H=N-n$, so we are done if we prove that Φ is surjective (then it is also injective, for dimensional reasons). We know that $D \pi(e): T_{e} G \rightarrow$ $T_{e H} G / H$ is surjective. For a given $v \in T_{e H} G / H$ let $v_{1} \in T_{e} G$ such that $D \pi(e)\left(v_{1}\right)=v$. Let $v_{1}=u_{1}+w_{1} \in T_{e} H \perp V$. Since $T_{e} H=\operatorname{ker} D \pi(e)$, we have $D \pi\left(v_{1}\right)=D \pi\left(w_{1}\right)=\Phi\left(w_{1}\right)$. This shows surjectivity of Φ.
(c) We first show that $T_{e} H$ is $A d(H)$ invariant. Let $v \in T_{e} H=\operatorname{ker} D \pi(e)$. Then there is a curve $c:(-\epsilon, \epsilon) \rightarrow H$ such that $c(0)=e$ and $c^{\prime}(0)=v$, and we have

$$
D \pi(e)(A d(h) v)=\left.\frac{d}{d t}\right|_{t=0} \pi(\underbrace{\left.h c(t) h^{-1}\right)}_{\in H})=0 \in T_{e H} G / H,
$$

i.e., $A d(h) v \in \operatorname{ker} D \pi(e)=T_{e} H$. Recall that $\left\langle\cdot, \cdot\right.$ rangle $_{e}$ is $A d(H)$-invariant. Let $v \in V$. We need to show that $A d(h) v \perp T_{e} H$. Let $h \in H$ and $w \in T_{e} H$. Then

$$
\langle A d(h) v, w\rangle_{e}=\left\langle A d\left(h^{-1}\right) A d(h) v, A d\left(h^{-1}\right) w\right\rangle_{e}=\langle\underbrace{v}_{\in V}, \underbrace{A d\left(h^{-1}\right) w}_{\in T_{e} H}\rangle_{e}=0 .
$$

Here we used $\operatorname{Ad}\left(h_{1}\right) A d\left(h_{2}\right)=A d\left(h_{1} h_{2}\right)$, which we finally show:

$$
\begin{aligned}
\operatorname{Ad}\left(h_{1}\right) \operatorname{Ad}\left(h_{2}\right) v & =\left.A d\left(h_{1}\right) \frac{d}{d t}\right|_{t=0} h_{2} \operatorname{Exp}(t v) h_{2}^{-1} \\
& =\left.\frac{d}{d t}\right|_{t=0} h_{1}\left(h_{2} \operatorname{Exp}(t v) h_{2}^{-1}\right) h_{1}^{-1} \\
& =\left.\frac{d}{d t}\right|_{t=0}\left(h_{1} h_{2}\right) \operatorname{Exp}(t v)\left(h_{1} h_{2}\right)^{-1}=\operatorname{Ad}\left(h_{1} h_{2}\right) v .
\end{aligned}
$$

Exercise 27. (a) The curve

$$
c(t)=\operatorname{Exp}\left(t\left(\begin{array}{cc}
0 & \alpha \\
-\alpha & 0
\end{array}\right)\right)=\left(\begin{array}{cc}
\cos \alpha t & \sin \alpha t \\
-\sin \alpha t & \cos \alpha t
\end{array}\right) \in H
$$

satisfies $c(0)=e$ and $c^{\prime}(0)=\left(\begin{array}{cc}0 & \alpha \\ -\alpha & 0\end{array}\right)$. Thus we have

$$
\left\{\left.\left(\begin{array}{cc}
0 & \alpha \\
-\alpha & 0
\end{array}\right) \right\rvert\, \alpha \in \mathbb{R}\right\} \subset T_{e} H
$$

Equality follows from the fact that both vector spaces are one-dimensional.
(b) For the symmetry, observe that $\operatorname{tr}(U)=\operatorname{tr}\left(U^{\top}\right)$. Thus

$$
\langle A, B\rangle_{e}=2 \operatorname{tr}\left(A B^{\top}\right)=2 \operatorname{tr}\left(B A^{\top}\right)=\langle B, A\rangle_{e} .
$$

Let $X \in H$. Then (see Example 30):

$$
A d(X) A=X A X^{-1}, \quad A d(X) B=X B X^{-1}
$$

Using $X^{-1}=X^{\top}$ (since $X \in S O(2)$), this implies

$$
\begin{aligned}
\langle A d(X) A, A d(X) B\rangle_{e} & =2 \operatorname{tr}\left(\left(X A X^{-1}\right)\left(X B X^{-1}\right)^{\top}\right) \\
& =2 \operatorname{tr}\left(X A B^{\top} X^{-1}\right)=2 \operatorname{tr}\left(X^{-1} X A B^{\top}\right) \\
& =2 \operatorname{tr}\left(A B^{\top}\right)=\langle A, B\rangle_{e}
\end{aligned}
$$

where we used $\operatorname{tr}(U V)=\operatorname{tr}(V U)$ in the second to last line above.
(c) We have

$$
\begin{aligned}
\left\langle\left(\begin{array}{cc}
\alpha & \beta \\
\beta & -\alpha
\end{array}\right),\left(\begin{array}{cc}
0 & \gamma \\
-\gamma & 0
\end{array}\right)\right. & =2 \operatorname{tr}\left(\left(\begin{array}{cc}
\alpha & \beta \\
\beta & -\alpha
\end{array}\right)\left(\begin{array}{cc}
0 & -\gamma \\
\gamma & 0
\end{array}\right)\right) \\
& =2 \operatorname{tr}\left(\begin{array}{cc}
\beta \gamma & -\alpha \alpha \\
-\alpha \gamma & -\beta \gamma
\end{array}\right)=0 .
\end{aligned}
$$

(d) We have

$$
\begin{aligned}
& \langle A, A\rangle_{2}=2 \operatorname{tr}\left(\left(\begin{array}{cc}
\frac{1}{2} & 0 \\
0 & -\frac{1}{2}
\end{array}\right)\left(\begin{array}{cc}
\frac{1}{2} & 0 \\
0 & -\frac{1}{2}
\end{array}\right)\right)=2 \operatorname{tr}\left(\begin{array}{cc}
\frac{1}{4} & 0 \\
0 & \frac{1}{4}
\end{array}\right)=1, \\
& \langle A, B\rangle_{2}=2 \operatorname{tr}\left(\left(\begin{array}{cc}
\frac{1}{2} & 0 \\
0 & -\frac{1}{2}
\end{array}\right)\left(\begin{array}{cc}
0 & \frac{1}{2} \\
\frac{1}{2} & 0
\end{array}\right)\right)=2 \operatorname{tr}\left(\begin{array}{cc}
0 & \frac{1}{4} \\
-\frac{1}{4} & 0
\end{array}\right)=0, \\
& \langle B, B\rangle_{2}=2 \operatorname{tr}\left(\left(\begin{array}{ll}
0 & \frac{1}{2} \\
\frac{1}{2} & 0
\end{array}\right)\left(\begin{array}{cc}
0 & \frac{1}{2} \\
\frac{1}{2} & 0
\end{array}\right)\right)=2 \operatorname{tr}\left(\begin{array}{cc}
\frac{1}{4} & 0 \\
0 & \frac{1}{4}
\end{array}\right)=1 .
\end{aligned}
$$

(e) Let

$$
\begin{aligned}
& c_{1}(t)=\operatorname{Exp}(t A)=\operatorname{Exp}\left(\begin{array}{cc}
\frac{t}{2} & 0 \\
0 & -\frac{t}{2}
\end{array}\right)=\left(\begin{array}{cc}
e^{t / 2} & 0 \\
0 e^{-t / 2} &)
\end{array}\right) \in S L(2, \mathbb{R}), \\
& c_{2}(t)=\operatorname{Exp}(t B)=\operatorname{Exp}\left(\begin{array}{cc}
0 & \frac{t}{2} \\
\frac{t}{2} & 0
\end{array}\right)=\left(\begin{array}{cc}
\cosh (t / 2) & \sinh (t / 2) \\
\sinh (t / 2) & \cosh (t / 2)
\end{array}\right) \in S L(2, \mathbb{R}) .
\end{aligned}
$$

Then $c_{1}(0)=c_{2}(0)=e$ and $c_{1}^{\prime}(0)=A$ and $c_{2}^{\prime}(0)=B$. We calculate the tangent vectors of the image curves

$$
\begin{aligned}
& \gamma_{1}(t)=f_{c_{1}(t)}(i)=\frac{e^{t / 2} i+0}{e^{-t / 2}}=e^{t} i \in \mathbb{H}^{2} \\
& \gamma_{2}(t)=f_{c_{2}(t)}(i)=\frac{\cosh (t / 2) i+\sinh (t / 2)}{\sinh (t / 2) i+\cosh (t / 2)} \in \mathbb{H}^{2},
\end{aligned}
$$

at $t=0$. Then $\gamma_{1}(0)=\gamma_{2}(0)=i$ and

$$
\gamma_{1}^{\prime}(t)=e^{t} i \in T_{\gamma_{1}(t)} \mathbb{H}^{2},
$$

i.e., $\gamma_{1}^{\prime}(0)=i \in T_{i} \mathbb{H}^{2}$, and

$$
\begin{aligned}
\gamma_{2}^{\prime}(t) & =\frac{1}{2(\sinh (t / 2) i+\cosh (t / 2))^{2}} \cdot \\
& =\frac{\left((\sinh (t / 2) i+\cosh (t / 2))^{2}-(\cosh (t / 2) i+\sinh (t / 2))^{2}\right)}{(\sinh (t / 2) i+\cosh (t / 2))^{2}} \in T_{\gamma_{2}(t)} \mathbb{H}^{2},
\end{aligned}
$$

i.e., $\gamma_{2}^{\prime}(0)=1 \in T_{i} \mathbb{H}^{2}$. Note that $1, i \in T_{i} \mathbb{H}^{2}$ form an orthonormal base with respect to the hyperbolic Riemannian metric on \mathbb{H}^{2}.

