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Riemannian Geometry IV

Solutions, set 11.

Exercise 26. Let N = dimG and n = dimH .
(a) We first show that TeH ⊂ kerDπ(e). Let v ∈ TeH . Then there exists

a curve c : (−ǫ, ǫ) → H such that c(0) = e and c′(0) = v. The image curve
π ◦ c : (−ǫ, ǫ) → G/H is constant because of c(t)H = eH for all t ∈ (−ǫ, ǫ).
This implies that

Dπ(e)(v) =
d

dt
|t=0π ◦ c(t) = 0 ∈ TeHG/H.

Dπ(e) : TeG → TeHG/H is surjective, and we have by the dimension formula:

dimkerDπ(e) + dimTeHG/H = dimTeG,

i.e., dimkerDπ(e) = N − (N − n) = n. Since dimTeH = n, we conclude that
TeH = kerDπ(e).

(b) Note first that dimV = dimTeG − dimkerDΠ(e) = N − n and
dimTeHG/H = N − n, so we are done if we prove that Φ is surjective (then
it is also injective, for dimensional reasons). We know that Dπ(e) : TeG →
TeHG/H is surjective. For a given v ∈ TeHG/H let v1 ∈ TeG such that
Dπ(e)(v1) = v. Let v1 = u1 + w1 ∈ TeH⊥V . Since TeH = kerDπ(e), we
have Dπ(v1) = Dπ(w1) = Φ(w1). This shows surjectivity of Φ.

(c) We first show that TeH is Ad(H) invariant. Let v ∈ TeH = kerDπ(e).
Then there is a curve c : (−ǫ, ǫ) → H such that c(0) = e and c′(0) = v, and
we have

Dπ(e)(Ad(h)v) =
d

dt
|t=0π(hc(t)h−1)

︸ ︷︷ ︸

∈H

) = 0 ∈ TeHG/H,

i.e., Ad(h)v ∈ kerDπ(e) = TeH . Recall that 〈·, ·ranglee is Ad(H)-invariant.
Let v ∈ V . We need to show that Ad(h)v⊥TeH . Let h ∈ H and w ∈ TeH .
Then

〈Ad(h)v, w〉e = 〈Ad(h−1)Ad(h)v, Ad(h−1)w〉e = 〈 v
︸︷︷︸

∈V

, Ad(h−1)w
︸ ︷︷ ︸

∈TeH

〉e = 0.

1



Here we used Ad(h1)Ad(h2) = Ad(h1h2), which we finally show:

Ad(h1)Ad(h2)v = Ad(h1)
d

dt
|t=0h2Exp(tv)h−1

2

=
d

dt
|t=0h1

(
h2Exp(tv)h−1

2

)
h−1

1

=
d

dt
|t=0(h1h2)Exp(tv)(h1h2)

−1 = Ad(h1h2)v.

Exercise 27. (a) The curve

c(t) = Exp(t

(
0 α
−α 0

)

) =

(
cos αt sin αt
− sin αt cos αt

)

∈ H

satisfies c(0) = e and c′(0) =

(
0 α
−α 0

)

. Thus we have

{

(
0 α
−α 0

)

| α ∈ R} ⊂ TeH.

Equality follows from the fact that both vector spaces are one-dimensional.
(b) For the symmetry, observe that tr(U) = tr(U⊤). Thus

〈A, B〉e = 2tr(AB⊤) = 2tr(BA⊤) = 〈B, A〉e.

Let X ∈ H . Then (see Example 30):

Ad(X)A = XAX−1, Ad(X)B = XBX−1.

Using X−1 = X⊤ (since X ∈ SO(2)), this implies

〈Ad(X)A, Ad(X)B〉e = 2tr
(
(XAX−1)(XBX−1)⊤

)

= 2tr
(
XAB⊤X−1

)
= 2tr

(
X−1XAB⊤

)

= 2tr(AB⊤) = 〈A, B〉e,

where we used tr(UV ) = tr(V U) in the second to last line above.
(c) We have

〈

(
α β
β −α

)

,

(
0 γ
−γ 0

)

= 2tr

((
α β
β −α

) (
0 −γ
γ 0

))

= 2tr

(
βγ −αα
−αγ −βγ

)

= 0.
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(d) We have

〈A, A〉2 = 2tr

((
1
2

0
0 −1

2

) (
1
2

0
0 −1

2

))

= 2tr

(
1
4

0
0 1

4

)

= 1,

〈A, B〉2 = 2tr

((
1
2

0
0 −1

2

) (
0 1

2
1
2

0

))

= 2tr

(
0 1

4

−1
4

0

)

= 0,

〈B, B〉2 = 2tr

((
0 1

2
1
2

0

) (
0 1

2
1
2

0

))

= 2tr

(
1
4

0
0 1

4

)

= 1.

(e) Let

c1(t) = Exp(tA) = Exp

(
t
2

0
0 − t

2

)

=

(
et/2 0

0e−t/2

)

∈ SL(2, R),

c2(t) = Exp(tB) = Exp

(
0 t

2
t
2

0

)

=

(
cosh(t/2) sinh(t/2)
sinh(t/2) cosh(t/2)

)

∈ SL(2, R).

Then c1(0) = c2(0) = e and c′1(0) = A and c′2(0) = B. We calculate the
tangent vectors of the image curves

γ1(t) = fc1(t)(i) =
et/2i + 0

e−t/2
= eti ∈ H

2,

γ2(t) = fc2(t)(i) =
cosh(t/2)i + sinh(t/2)

sinh(t/2)i + cosh(t/2)
∈ H

2,

at t = 0. Then γ1(0) = γ2(0) = i and

γ′

1(t) = eti ∈ Tγ1(t)H
2,

i.e., γ′
1(0) = i ∈ TiH

2, and

γ′

2(t) =
1

2(sinh(t/2)i + cosh(t/2))2
·

(
(sinh(t/2)i + cosh(t/2))2 − (cosh(t/2)i + sinh(t/2))2

)

=
1

(sinh(t/2)i + cosh(t/2))2
∈ Tγ2(t)H

2,

i.e., γ′
2(0) = 1 ∈ TiH

2. Note that 1, i ∈ TiH
2 form an orthonormal base with

respect to the hyperbolic Riemannian metric on H
2.
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