Riemannian Geometry IV

Solutions, set 12.

Exercise 28. We have

$$
\begin{aligned}
& E^{\prime}(0)=\left.\frac{d}{d s}\right|_{s=0} \frac{1}{2} \int_{a}^{b}\left\|\frac{\partial F}{\partial t}(s, t)\right\|^{2} d t=\left.\frac{1}{2} \int_{a}^{b} \frac{\partial}{\partial s}\right|_{s=0}\left\langle\frac{\partial F}{\partial t}(s, t), \frac{\partial F}{\partial t}(s, t)\right\rangle d t= \\
& \int_{a}^{b}\left\langle\frac{D}{d s} \frac{\partial F}{\partial t}(0, t), c^{\prime}(t)\right\rangle d t
\end{aligned}
$$

Applying the Symmetry Lemma yields

$$
\begin{array}{r}
\left.E^{\prime}(0)=\int_{a}^{b}\left\langle\frac{D}{d t} \frac{\partial F}{\partial s}(0, t), c^{\prime}(t)\right\rangle d t=\int_{a}^{b} \frac{d}{d t}\left\langle X(t), c^{\prime} 9 t\right)\right\rangle-\left\langle X(t), \frac{D}{d t} c^{\prime}(t)\right\rangle d t= \\
\left\langle X(b), c^{\prime}(b)\right\rangle-\left\langle X(a), c^{\prime}(a)\right\rangle-\int_{a}^{b}\left\langle X(t), \frac{D}{d t} c^{\prime}(t)\right\rangle d t
\end{array}
$$

(i) If c is a geodesic, this simplifies to $E^{\prime}(0)=\left\langle X(b), c^{\prime}(b)\right\rangle-\left\langle X(a), c^{\prime}(a)\right\rangle$.
(ii) If F is a proper variation, this simplifies to $E^{\prime}(0)=-\int_{a}^{b}\left\langle X(t), \frac{D}{d t} c^{\prime}(t)\right\rangle d t$.
(iii) If c is a geodesic and F is a proper variation, this simplifies to $E^{\prime}(0)=0$.

Assume that c is not a geodesic. Then there exists a $t_{0} \in[a, b]$ with $\frac{D}{d t} c^{\prime}\left(t_{0}\right) \neq$ 0 . Since the map $t \rightarrow \frac{D}{d t} c^{\prime}\left(t_{0}\right)$ is continuous, we can assume, w.l.o.g, that $t_{0} \in(a, b)$. Choose a smooth function $\varphi:[a, b] \rightarrow[0,1]$ with $\varphi(a)=\varphi(b)=0$ and $\varphi\left(t_{0}\right)=1$ and set $X(t)=\varphi(t) \frac{D}{d t} c^{\prime}(t)$. Then X is the variational vector field of a proper variation F, and we obtain for its energy functional

$$
E^{\prime}(0)=-\int_{a}^{b}\left\langle X(t), \frac{D}{d t} c^{\prime}(t)\right\rangle d t=-\int_{a}^{b} \varphi(t)\left\|\frac{D}{d t} c^{\prime}(t)\right\| d t<0 .
$$

So we have proved

$$
c \text { no geodesic } \Rightarrow E^{\prime}(0) \neq 0 \text { for some proper variation, }
$$

which is equivalent to (iv).
Finally, assume that c minimises energy amongst all curves $\gamma:[a, b] \rightarrow M$ connecting p, q. Let F be a proper variation. Then the curves $t \mapsto F(s, t)$ are also curves $[a, b] \rightarrow M$ connecting p, q, so their energy is $\geq E(0)=E(c)$. This implies that $E^{\prime}(0)=0$. Using (iv), we conclude that c is a geodesic, proving (v).

