Riemannian Geometry IV

Solutions, set 13.

Exercise 29. We have

$$
c^{\prime}(s)=\frac{\partial F}{\partial s}(s, r(s))+\frac{\partial F}{\partial t}(s, r(s)) r^{\prime}(s)
$$

by the chain rule. Note that $\left\|\frac{\partial F}{\partial t}(s, t)\right\|=\|v(s)\|=1$ (since $t \mapsto F(s, t)$ is a geodesic with initial vector $v(s))$ and $\frac{\partial F}{\partial s}(s, t) \perp \frac{\partial F}{\partial t}(s, t)$, by the Gauß-Lemma. Therefore,

$$
\left\|c^{\prime}(s)\right\|=\sqrt{\left|r^{\prime}(s)\right|^{2}+\left\|\frac{\partial F}{\partial s}(s, r(s))\right\|^{2}} \geq\left|r^{\prime}(s)\right|
$$

and we conclude that

$$
l(c)=\int_{a}^{b}\left\|c^{\prime}(s)\right\| d s \geq \int_{a}^{b}\left|r^{\prime}(s)\right| d s \geq\left|\int_{a}^{b} r^{\prime}(s) d s\right|=|r(b)-r(a)|
$$

with equality in the first inequality if and only if $\| \frac{\partial F}{\partial s}(s, r(s)) \equiv 0$ and equality in the second inequality if and only if $r^{\prime} \geq 0$ or $r^{\prime} \leq 0$ on $[a, b]$. Hence: We have equality if and only if r is monotone and $v(s)$ is a constant function $\equiv v$, i.e., $c(s)=\exp _{p} r(s) v$.

Exercise 30. (a) Note that $\varphi(p)=0$, so

$$
\left.\frac{\partial}{\partial x_{i}}\right|_{p}=\left.\frac{d}{d t}\right|_{t=0} \varphi^{-1}\left(0+t e_{i}\right)=\left.\frac{d}{d t}\right|_{t=0} \exp _{p}\left(t v_{i}\right)=v_{i}
$$

This implies that

$$
g_{i j}(p)=\left\langle\frac{\partial}{\partial x_{i}}, \frac{\partial}{\partial x_{j}}\right\rangle_{p}=\left\langle v_{i}, v_{j}\right\rangle_{p}=\delta_{i j} .
$$

(b) We have

$$
\begin{equation*}
c(t)=\varphi^{-1}\left(t w_{1}, \ldots, t w_{n}\right)=\exp _{p}\left(t \sum_{j} w_{j} v_{j}\right) . \tag{1}
\end{equation*}
$$

Let $v=\sum_{j} w_{j} v_{j} \in T_{p} M$. Then (1) shows that c is a geodesic with initial vector v. Let $\left(c_{1}, \ldots, c_{n}\right)=\varphi \circ c$, i.e., $c_{j}(t)=t w_{j}, c_{j}^{\prime}(t)=w_{j}$ and $c_{j}^{\prime \prime}(t)=0$. Let $\frac{D}{d t}$ denote covariant derivative along c. Since c is a geodesic, we have

$$
\begin{aligned}
0=\frac{D}{d t} c^{\prime} & =\frac{D}{d t} \sum_{j} c_{j}^{\prime}\left(\frac{\partial}{\partial x_{j}} \circ c\right)=\sum_{j} w_{j} \nabla_{c^{\prime}} \frac{\partial}{\partial x_{j}} \\
& =\sum_{i, j} w_{i} w_{j}\left(\nabla_{\frac{\partial}{\partial x_{i}}} \frac{\partial}{\partial x_{j}}\right) \circ c=\sum_{k}\left(\sum_{i, j} w_{i} w_{j}\left(\Gamma_{i j}^{k} \circ c\right)\right) \frac{\partial}{\partial x_{k}} \circ c .
\end{aligned}
$$

Using the fact that $\frac{\partial}{\partial x_{k}}$ form a basis, we conclude that

$$
\begin{equation*}
\sum_{i, j} w_{i} w_{j} \Gamma_{i j}^{k}(c(t))=0 \tag{2}
\end{equation*}
$$

for all $k \in\{1, \ldots, n\}$.
(c) Evaluating (2) at $t=0$, we obtain

$$
\sum_{i, j} w_{i} w_{j} \Gamma_{i j}^{k}(p)=0 \quad \text { for all } w \in \mathbb{R}^{n}
$$

The choice $w=e_{i}+e_{j}$ yields

$$
2 \Gamma_{i j}^{k}(p)=0
$$

so we conclude that all Christoffel symbols vanish at p. Consequently, we have

$$
\nabla_{\frac{\partial}{\partial x_{i}}} \frac{\partial}{\partial x_{j}}(p)=0
$$

Exercise 31. We first show that

$$
\Psi\left(T_{v} S M\right) \subset\left\{\left(w_{1}, w_{2}\right) \in T_{p} M \times T_{p} M \mid w_{2} \perp v \text { w.r.t } g_{p}\right\} .
$$

The result follows then immediately from dimension considerations, since both vector spaces have dimension $2 n-1$.

Let $X:(-\epsilon, \epsilon) \rightarrow S M$ be a curve with $X(0)=v \in S_{p} M$, representing a tangent vector $X^{\prime}(0) \in T_{v} S M$. Let $c=\pi \circ X:(-\epsilon, \epsilon) \rightarrow M$ be the corresponding projected curve. Let $\frac{D}{d t}$ denote the covariant derivative along
c. Then $X \in \mathcal{X}_{c}(M)$ and we have, using the Riemannian property of the Levi-Civita connection,

$$
0=\left.\frac{d}{d t}\right|_{t=0}\|X(t)\|^{2}=2 g_{c(t)}\left(\frac{D}{d t} X(t), X(t)\right)
$$

Evaluating at $t=0$ yields

$$
0=2 g_{p}\left(\frac{D}{d t} X(0), v\right)
$$

which implies that

$$
\Psi\left(X^{\prime}(0)\right)=\left(w_{1}=c^{\prime}(0), w_{2}=\frac{D}{d t} X(0)\right)
$$

with $g_{p}\left(w_{2}, v\right)=0$, i.e., $w_{2} \perp v$.

