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Riemannian Geometry IV

Solutions, set 18.

Exercise 44.

(a) The tangent space of S2
r at p ∈ S2

r is given by

TpS
2
r = p⊥.

Now, using the results of Example 22, we obtain

D

dt
X(t) =

(
d

dt
(0, cos t, 0)

)⊥
= ((0,− sin t, 0))⊥ ,

where v⊥ is taken at c(t) = (r cos t, 0, r sin t). Since (0,− sin t, 0)⊥c(t), we
conclude that

D

dt
X(t) = (0,− sin t, 0).

Similarly, we conclude that

D2

dt2
X(t) = (0,− cos t, 0) = −X(t).

Now, using the notation of Exercise 37, we have

∂

∂x1

∣
∣
∣
c(t)

= (−r sin t, 0, r cos t) = c′(t),

∂

∂x2

∣
∣
∣
c(t)

= (0, r cos t, 0) = rX(t).

Using the results of Exercise 37(a), we conclude that

R(
∂

∂x2

,
∂

∂x1

)
∂

∂x1

= ∇ ∂

∂x2

∇ ∂

∂x1

∂

∂x1

−∇ ∂

∂x1

∇ ∂

∂x2

∂

∂x1

= ∇ ∂

∂x2

(0) −∇ ∂

∂x1

(

− tan x1
∂

∂x2

)

= (1 + tan2 x1)
∂

∂x2
− tan2 x1

∂

∂x2
=

∂

∂x2
.
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This implies that

R(X(t), c′(t))c′(t) = r

(

R(
∂

∂x2
,

∂

∂x1
)

∂

∂x1

)

(c(t)) = r
∂

∂x2

∣
∣
∣
c(t)

= rX(t).

Bringing everything together, we conclude that

D2

dt2
X(t) + R(X(t), c′(t))c′(t) = −X(t) + X(t) = 0,

i.e., X satisfies the Jacobi equation.

Exercise 45.

(a) We conclude from Proposition 6.4 that

R(v1, v2)v3 = K(〈v2, v3〉v1 − 〈v1, v3〉v2).

This implies
R(J, c′)c′ = K(〈c′, c′〉J − 〈J, c′〉c′).

Since ‖c′‖2 = 1 and J⊥c′, we obtain

R(J, c′)c′ = KJ.

(b) We only consider the case K > 0, all other cases are similar. The

vector field J(t) = cos(t
√

K)Z1(t) + sin(t
√

K)√
K

Z2(t) satisfies J(0) = Z1(0) and

DJ

dt
(t) = −

√
K sin(t

√
K)Z1(t) + cos(t

√
K)Z2(t),

which implies DJ
dt

(0) = Z2(0). Obviously, we have

D2J

dt2
(t) = −K cos(t

√
K)Z1(t) −

√
K sin(t

√
K)Z2(t) = −KJ(t),

and therefore we obtain

D2J

dt2
(t) + KJ(t) = 0,

i.e., J satisfies the Jacobi equation.
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Exercise 46.

(a) We have

f ′(t) =
d

dt

∣
∣
∣
t=0

〈J(t), J(t)〉 = 2〈D
dt

J(t), J(t)〉

and

f ′′(t) = 2

(

〈D
2

dt2
J(t), J(t)〉 +

∥
∥
∥
D

dt
J(t)

∥
∥
∥

2
)

.

Using Jacobi’s equation, we conclude

f ′′(t) = 2

(

−〈R(J(t), c′(t))c′(t), J(t)〉 +
∥
∥
∥
D

dt
J(t)

∥
∥
∥

2
)

.

We have 〈R(J(t), c′(t))c′(t), J(t)〉 = 0 if J(t), c′(t) are linear dependent and,
otherwise, for σ = span(J(t), c′(t)) ⊂ Tc(t)M ,

〈R(J(t), c′(t))c′(t), J(t)〉 = K(σ)
(
‖J(t)‖2‖c′(t)‖2 − (〈J(t), c′(t)〉)2

)
≤ 0,

since sectional curvature is non-positive. This shows that f ′′(t), as a sum of
two non-negative terms, is greater or equal to zero.

(b) If there were a conjugate point q = c(t2) to a point p = c(t1) along the
geodesic c, then we would have a non-vanishing Jacobi field J along c with
J(t1) = 0 and J(t2) = 0. This would imply that the convex, non-negative
function f(t) = ‖J(t)‖2 would have zeroes at t = t1 and = t2. This would
force f to vanish identically on the interval [t1, t2], which would imply that
J vanishes as well, which is a contradiction.

Exercise 47.

(a) We know that ∇R = 0. Let D
dt

denote covariant derivative along c.
Then we have, for parallel vector fields X, Y, Z along c that

0 = ∇R(X, Y, Z, c′)(t) =
D

dt
R(X(t), Y (t))Z(t)

− R(
D

dt
X(t)

︸ ︷︷ ︸

=0

, Y (t))Z(t) − R(X(t),
D

dt
Y (t)

︸ ︷︷ ︸

=0

)Z(t) − R(X(t), Y (t))
D

dt
Z(t)

︸ ︷︷ ︸

=0

=
D

dt
R(X(t), Y (t))Z(t).

This shows that R(X, Y )Z is parallel.
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(b) The symmetries of R yield

〈Kv(w1), w〉 = 〈R(w1, v)v, w2〉 = 〈R(v, w2)w1, v〉 = −〈R(w2, v)w1, v〉
= 〈R(w2, v)v, w1〉 = 〈Kv(w2), w1〉.

(c) Since Kv is symmetric, we can find an orthonormal basis w1, . . . , wn ∈
TpM with Kv(wi) = λiwi. We know, by (a), that Kc′(t)(Wi(t)) =
R(Wi(t), c

′(t))Wi(t) is parallel and, since Kc′(0)(Wi(0)) = Kv(wi) = λiwi, we
must have

Kc′(t)(Wi(t)) = λiWi(t),

since parallel vector fields V along c are uniquely determined by their initial
values V (0) ∈ TpM .

(d) Let J be a Jacobi field along c. Then J satisfies the Jacobi equation

D2J

dt2
J + R(J, c′)c′ = 0.

Since W1, . . . , Wn are a parallel on-basis along c, we obtain, by taking inner
product with Wi:

〈
D2J

dt2
J, Wi

〉

+ 〈R(J, c′)c′, Wi〉

=
d2

dt2

∑

j

Jj〈Wj, Wi〉 +
∑

j

Jj〈R(Wj, c
′)c′, Wi〉

= J ′′
i +

∑

j

Jjλj〈Wj , Wi〉 = J ′′
i + λiJi.

(e) The unique solution of J ′′
i (t) + λiJi(t) = 0, Ji(0) = 0 (up to scalar

multiples) is given by

Ji(t) =







sin(t
√

λi) if λi > 0,

t if λi = 0,

sinh(t
√
−λi) if λi < 0.

So Ji has zeroes for positive t only if λi > 0, and these are precisely at
t = πk/

√
λi. The corresponding Jacobi fields with J(0) = 0 and DJ

dt
(0) = wi

produce the conjugate points c(πk/
√

λi).
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