Riemannian Geometry IV

Solutions, set 3.

Note that we present the solution of Exercise 7 before the solution of Exercise 6.

Exercise 7.

(a) $\varphi=\left(\varphi_{1}, \varphi_{2}\right): U \rightarrow V_{1} \times V_{2}$ is a diffeomorphism. The map $\Phi: V_{1} \rightarrow U$, $\Phi(x)=\varphi^{-1}((x, 0))$ is differentiable. Let $Z_{e}=\pi(U) \subset G / H$ and

$$
F: \pi \circ \Phi: V_{1} \rightarrow Z_{e}
$$

Z_{e} is obviously a neighbourhood of $e H \in G / H$. We prove that F is bijective: Assume $F\left(x_{1}\right)=F\left(x_{2}\right)$. Then $F\left(x_{1}\right)=g_{x_{1}} H=g_{x_{2}} H=F\left(x_{2}\right)$. By (c), we conclude that $x_{1}=x_{2}$, i.e., F is injective. Let $g H \in \pi(U)$. Then there is an $x \in V_{1}$ such that $g H=g_{x} H$, and therefore $g H=F(x)$. This shows that F is surjective. Let $\Psi_{e}: F^{-1}: Z_{e} \rightarrow V_{1}$. Then $\left(\Psi_{e}, Z_{e}\right)$ is a coordinate chart in a neighbourhood of $e H \in G / H$.
(b) A coordinate chart around $g H \in G / H$ is obtained from $\left(\Psi_{e}, Z_{e}\right)$ by defining

$$
\left(\Psi_{g}\right)^{-1}: \pi \circ L_{g} \circ \Phi: V_{1} \rightarrow Z_{g},
$$

where $Z_{g}=\pi(g U) \subset G / H$. Bijectivity of $\left(\Psi_{g}\right)^{-1}: V_{1} \rightarrow Z_{g}$ is proved as in (a). The coordinate chart is then $\left(\Psi_{g}, Z_{g}\right)$ with $\Psi_{g}: Z_{g} \rightarrow V_{1}$.
(c) Let $g H \in Z_{g_{1}} \cap Z_{g_{2}}$. We have to prove that $\Psi_{g_{2}} \circ \Psi_{g_{1}}^{-1}$ is differentiable in $x_{1}=\Psi_{g_{1}}(g H) \in V_{1}$. Let $x_{2}=\Psi_{g_{2}}(g H) \in V_{1}$. Then $g H=g_{1} g_{x_{1}} H=$ $g_{2} g_{x_{2}} H$ and we have $h \in H$ such that $g_{2} g_{x_{2}}=g_{1} g_{x_{1}} h$. There is an open neighbourhood $W \subset g_{1} U$ of $g_{1} g_{x_{1}}$ such that $h W \subset g_{2} U$ and $\tilde{W}=\varphi(W)$ is an open neighbourhood of $\left(x_{1}, 0\right)$ in $V_{1} \times V_{2}$. Then $T:=\left\{x \in V_{1} \mid(x, 0) \in \tilde{W}\right\}$ is an open set in V_{1} containing x_{1}. One easily checks that the coordinate change $\Psi_{g_{2}} \circ \Psi_{g_{1}}^{-1}$ can be written as

$$
\Psi_{g_{2}} \circ \Psi_{g_{1}}^{-1}=\varphi_{1} \circ L_{g_{2}}^{-1} \circ R_{h} \circ L_{g_{1}} \circ \Phi: T \rightarrow V_{1}
$$

and is differentiable as a composition of differentiable maps. Since $x_{1} \in T$, this shows that this coordinate change is differentiable at x_{1}.

Exercise 6. Let $A:(-\epsilon, \epsilon) \rightarrow S O(n)$ be a differentiable curve on the differentiable manifold $S O(n)$ with $A(0)=e$. Then we know that

$$
A(t)(A(t))^{\top}=e,
$$

for all $t \in(-\epsilon, \epsilon)$. Differentiation gives
$A^{\prime}(0)(A(0))^{\top}+A(0)\left(A^{\prime}(0)\right)^{\top}=A^{\prime}(0) e^{\top}+e\left(A^{\prime}(0)\right)^{\top}=A^{\prime}(0)+\left(A^{\prime}(0)\right)^{\top}=0$.
So we conclude that

$$
T_{e} S O(n) \subset\left\{B \in M(n, \mathbb{R}) \mid B+B^{\top}=0\right\}
$$

The right side is the space of all skew symmetric $n \times n$-matrices, which is a vector space of dimension $\frac{n(n-1)}{2}$. Since $S O(n)$ is a differentiable manifold of dimension $\frac{n(n-1)}{2}$, its tangent space $T_{e} S O(n)$ is a vector space of the same dimension. Since both vector spaces have the same dimension, the above inclusion is actually an equality, i.e.,

$$
T_{e} S O(n)=\left\{B \in M(n, \mathbb{R}) \mid B+B^{\top}=0\right\}
$$

