Riemannian Geometry IV

Solutions, set 4.

Exercise 8.

(a) For $X=\sum f_{i} \frac{\partial}{\partial x_{i}}, Y=\sum g_{i} \frac{\partial}{\partial x_{i}}$, we have the general formula:

$$
[X, Y]=\sum_{i}\left(\sum_{j} f_{j} \frac{\partial g_{i}}{\partial x_{j}}-g_{j} \frac{\partial f_{i}}{\partial x_{j}}\right) \frac{\partial}{\partial x_{i}} .
$$

Applying this formula to our case, we obtain

$$
\begin{aligned}
& {[X, Y]=\left(-x_{3} \frac{\partial\left(2 x_{3}-x_{2}\right)}{\partial x_{2}}+x_{2} \frac{\partial\left(2 x_{3}-x_{2}\right)}{\partial x_{3}}\right) \frac{\partial}{\partial x_{1}} } \\
&+\left(-2 x_{1} \frac{\partial x_{3}}{\partial x_{3}}\right) \frac{\partial}{\partial x_{2}}+\left(-x_{1} \frac{\partial u_{2}}{\partial u_{2}}\right) \frac{\partial}{\partial x_{3}} \\
&=\left(x_{3}+2 x_{2}\right) \frac{\partial}{\partial x_{1}}-2 x_{1} \frac{\partial}{\partial x_{2}}-x_{1} \frac{\partial}{\partial x_{3}}=Z .
\end{aligned}
$$

(b) Identifying $\frac{\partial}{\partial x_{i}}$ with the standard basis vector $e_{i} \in \mathbb{R}^{3}$ yields

$$
X\left(x_{1}, x_{2}, x_{3}\right)=\left(2 x_{3}-x_{2}, x_{1},-2 x_{1}\right)^{\top}, \quad Y\left(x_{1}, x_{2}, x_{3}\right)=\left(0, x_{3},-x_{2}\right)^{\top} .
$$

In order to show that the restrictions of X, Y to S^{2} are vector fields on S^{2}, we have to show that they are tangent to the sphere. The tangent space $T_{x} S^{2}$ is given by all vectors $z \in \mathbb{R}^{3}$ such that $\langle x, z\rangle=0$. So we check:

$$
\begin{aligned}
\left\langle\left(x_{1}, x_{2}, x_{3}\right), X\left(x_{1}, x_{2}, x_{3}\right)\right\rangle & =x_{1}\left(2 x_{3}-x_{2}\right)+x_{2} x_{1}-2 x_{3} x_{1}=0, \\
\left\langle\left(x_{1}, x_{2}, x_{3}\right), Y\left(x_{1}, x_{2}, x_{3}\right)\right\rangle & =x_{2} x_{3}-x_{3} x_{2}=0 .
\end{aligned}
$$

(c) Similarly as in (b), we have to check that $\langle x, Z(x)\rangle=0$. Using $Z\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{3}+2 x_{2},-2 x_{1},-x_{1}\right)^{\top}$, we obtain

$$
\left\langle\left(x_{1}, x_{2}, x_{3}\right), Z\left(x_{1}, x_{2}, x_{3}\right)\right\rangle=x_{1}\left(x_{3}+2 x_{2}\right)-2 x_{2} x_{1}-x_{3} x_{1}=0
$$

Exercise 9.

(a) We have

$$
[X, Y] f=X Y f-Y X f=-(Y X f-X Y f)=-[Y, X] f
$$

for all $f \in C^{\infty}(M)$. This implies that $[X, Y]=-[Y, X]$.
(b) Note that $Z(a g)=a Z(g)$ for constants $a \in \mathbb{R}$ since

$$
\frac{\partial}{\partial x_{i}}(a g)=a \frac{\partial g}{\partial x_{i}},
$$

and the same holds for linear combinations of these basis vector fields. So we have

$$
\begin{aligned}
& {[a X+b Y, Z] f=(a X+b Y) Z f-Z(a X+b Y) f} \\
& \begin{aligned}
&=a X Z f+b Y Z f-a Z X f-b Z Y f=a(X Z f-Z X f)+b(Y Z f-Z Y f) \\
&=a[X, Z] f+b[Y, Z] f
\end{aligned}
\end{aligned}
$$

(c) Using (a), it is enough to show that

$$
[[X, Y], Z]=[X,[Y, Z]]+[Y,[Z, X]] .
$$

The left side, applied to a function $f \in C^{\infty}(M)$ is

$$
[[X, Y], Z] f=[X, Y] Z f-Z[X, Y] f=X Y Z f-Y X Z f-Z X Y f+Z Y X f
$$

The right side, applied to the same function is

$$
\begin{aligned}
& \quad[X,[Y, Z]] f+[Y,[Z, X]] f= \\
& X Y Z f-X Z Y f-Y Z X f+Z Y X f+Y Z X f-Y X Z f-Z X Y f+X Z Y f \\
&=X Y Z f+Z Y X f-Y X Z f-Z X Y f
\end{aligned}
$$

which is notably the same. This proves Jacobi's identity.

