Riemannian Geometry IV

Solutions, set 6.

Exercise 14. The normal vector is given by

$$
N\left(x_{1}, x_{2}\right)=\frac{\frac{\partial}{\partial x_{1}} \times \frac{\partial}{\partial x_{2}}}{\left\|\frac{\partial}{\partial x_{1}} \times \frac{\partial}{\partial x_{2}}\right\|}=\left(\cos x_{1} \cos x_{2}, \cos x_{1} \sin x_{2}, \sin x_{1}\right) .
$$

This implies that

$$
\begin{aligned}
& \frac{\partial N}{\partial x_{1}}\left(x_{1}, x_{2}\right)=\left(-\sin x_{1} \cos x_{2},-\sin x_{1} \sin x_{2}, \cos x_{1}\right) \\
& \frac{\partial N}{\partial x_{2}}\left(x_{1}, x_{2}\right)=\left(-\cos x_{1} \sin x_{2}, \cos x_{1} \cos x_{2}, 0\right)
\end{aligned}
$$

and

$$
\begin{aligned}
L & =-\left\langle\frac{\partial N}{\partial x_{1}}\left(x_{1}, x_{2}\right),\left.\frac{\partial}{\partial x_{1}}\right|_{\varphi^{-1}\left(x_{1}, x_{2}\right)}\right\rangle=r \\
M & =-\left\langle\frac{\partial N}{\partial x_{1}}\left(x_{1}, x_{2}\right),\left.\frac{\partial}{\partial x_{2}}\right|_{\varphi^{-1}\left(x_{1}, x_{2}\right)}\right\rangle=0, \\
N & =-\left\langle\frac{\partial N}{\partial x_{2}}\left(x_{1}, x_{2}\right),\left.\frac{\partial}{\partial x_{2}}\right|_{\varphi^{-1}\left(x_{1}, x_{2}\right)}\right\rangle=\left(R+r \cos x_{1}\right) \cos x_{1} .
\end{aligned}
$$

Using $E=g_{11}\left(\varphi^{-1}\left(x_{1}, x_{2}\right)\right)=r^{2}, F=g_{12}\left(\varphi^{-1}\left(x_{1}, x_{2}\right)\right)=0$ and $G=$ $g_{22}\left(\varphi^{-1}\left(x_{1}, x_{2}\right)\right)=\left(R+r \cos x_{1}\right)^{2}$, we conclude that

$$
K\left(\varphi^{-1}\left(x_{1}, x_{2}\right)\right)=\frac{L N-M^{2}}{E G-F^{2}}=\frac{r\left(R+r \cos x_{1}\right) \cos x_{1}}{r^{2}\left(R+r \cos x_{1}\right)^{2}}=\frac{\cos x_{1}}{r\left(R+r \cos x_{1}\right)} .
$$

$x_{1}=\pi / 2$ or $x_{1}=3 \pi / 2$ describe points of the torus intersected with the planes $Z=r$ and $Z=-r$. Note that T^{2} lies between these two planes and touches each plane in a circle of radius R. Obviously, one of the principal curvatures at these points is equal to zero while the other is equal to $r>0$, so the Gaussian curvature vanishes. $x_{1}=\pi$ describes the points at the inner
circle of the torus, i.e., the horizontal circle in the (X, Y)-plane with radius $R-r>0$. These points are obvioulsy saddle points and the two principal curvatures have different signs. So the Gaussian curvature is negative at these points.

Next, we calculate

$$
\begin{aligned}
\int_{T^{2}} K d \mathrm{vol}=\int_{0}^{2 \pi} \int_{0}^{2 \pi} \frac{\cos x_{1}}{r\left(R+r \cos x_{1}\right)} r(R & \left.+r \cos x_{1}\right) d x_{1} d x_{2} \\
& =\int_{0}^{2 \pi} \int_{0}^{2 \pi} \cos x_{1} d x_{1} d x_{2}=0
\end{aligned}
$$

The Gauss-Bonnet Theorem tells us for any closed, oriented surface $S \subset \mathbb{R}^{3}$ we have

$$
\frac{1}{2 \pi} \int_{S} K d \mathrm{vol}=\chi(S)
$$

where $\chi(S)$ is the Euler characteristic of the surface S and given by $\chi(S)=$ $2-2 g$, where g is the genus of the surface. Since the genus of the torus is equal to one, we conclude that $\chi\left(T^{2}\right)=0$, justifying the above calculated result.

Exercise 15. (a) We have $c^{\prime}(t)=i$ for all $t \in[a, b]$. The function $l:[a, b] \rightarrow$ $[0, L(c)]$ is given by

$$
l(t)=\int_{a}^{t}\left\|c^{\prime}(s)\right\|_{c(s)} d s=\ln \frac{t}{a}
$$

So $l:[a, b] \rightarrow[0, \ln (b / a)]$ is bijective, strictly monotone increasing and differentiable. We calculate its inverse:

$$
s=l(t) \Leftrightarrow s=\ln \frac{t}{a} \Leftrightarrow e^{s}=\frac{t}{a} \Leftrightarrow t=a e^{s} .
$$

So $l^{-1}(s)=a e^{s}$ and an arc length reparametrization of c is given by $\gamma=$ $c \circ l^{-1}:[0, \ln (b / a)] \rightarrow \mathbb{H}^{2}$,

$$
\gamma(s)=c\left(l^{-1}(s)\right)=c\left(a e^{s}\right)=a e^{s} i
$$

(b) We have

$$
c(t)=\frac{(a i \cos t+\sin t)(a i \sin t+\cos t)}{\cos ^{2} t+a^{2} \sin ^{2} t}=\frac{\sin t \cos t\left(1-a^{2}\right)+i a}{\cos ^{2} t+a^{2} \sin ^{2} t}
$$

so

$$
\operatorname{Im}(c(t))=\frac{a}{\cos ^{2} t+a^{2} \sin ^{2} t}
$$

On the other hand, we have

$$
c^{\prime}(t)=\frac{(-a i \sin t+\cos t)^{2}+(a i \cos t+\sin t)^{2}}{(-a i \sin t+\cos t)^{2}}=\frac{1-a^{2}}{(-a i \sin t+\cos t)^{2}}
$$

This implies that

$$
\left|c^{\prime}(t)\right|=\frac{a^{2}-1}{\cos ^{2} t+a^{2} \sin ^{2} t},
$$

and

$$
\left\|c^{\prime}(t)\right\|_{c(t)}=\frac{a^{2}-1}{\cos ^{2} t+a^{2} \sin ^{2} t} \frac{\cos ^{2} t+a^{2} \sin ^{2} t}{a}=\frac{a^{2}-1}{a}=a-\frac{1}{a} .
$$

So we obtain

$$
L(c)=\int_{0}^{\pi}\left\|c^{\prime}(t)\right\|_{c(t)} d t=\pi\left(a-\frac{1}{a}\right) .
$$

Exercise 16. $c(t)=\left(\cos ^{3}(t), \sin ^{3}(t)\right)$ implies that

$$
c^{\prime}(t)=3 \sin t \cos t(-\cos (t), \sin (t))
$$

So we obtain

$$
\left\|c^{\prime}(t)\right\|=3|\sin t \cos t|=\frac{3}{2}|\sin (2 t)|
$$

and the length is given by

$$
\begin{aligned}
& L(c)=\int_{0}^{2 \pi}\left\|c^{\prime}(t)\right\| d t \\
& \begin{aligned}
=\frac{3}{2}\left(\int_{0}^{\pi / 2} \sin (2 t) d t-\int_{\pi / 2}^{\pi} \sin (2 t) d t+\int_{\pi}^{\frac{3 \pi}{2}}\right. & \left.\sin (2 t) d t-\int_{\frac{3 \pi}{2}}^{2 \pi} \sin (2 t) d t\right) \\
& =\frac{3}{2} \cdot 4 \cdot \int_{0}^{\pi / 2} \sin (2 t) d t=6 .
\end{aligned}
\end{aligned}
$$

Exercise 17.

(a) If $z_{1}=z_{2}$ there is nothing to check. Let $z_{1}=a i$ and $z_{2}=b i$. In this case we have

$$
d_{\mathbb{H}}\left(z_{1}, z_{2}\right)=|\ln b / a|,
$$

which implies that

$$
\sinh \left(\frac{1}{2} d\left(z_{1}, z_{2}\right)\right)=\frac{1}{2}\left|\exp \left(\frac{\ln (b / a)}{2}\right)-\exp \left(-\frac{\ln (b / a)}{2}\right)\right|=\frac{1}{2}\left|\sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}}\right| .
$$

On the other hand we obtain

$$
\frac{\left|z_{1}-z_{2}\right|}{2 \sqrt{\operatorname{Im}\left(z_{1}\right) \operatorname{Im}\left(z_{2}\right)}}=\frac{|a-b|}{2 \sqrt{a b}}=\frac{1}{2}\left|\frac{a}{\sqrt{a b}}-\frac{b}{\sqrt{a b}}\right|,
$$

which shows the validity of the formula in this particular case.
(b) Since f_{A} is an isometry (see Exercise 11), we have $d\left(f_{A}\left(z_{1}\right), f_{A}\left(z_{2}\right)\right)=$ $d\left(z_{1}, z_{2}\right)$. This immediately implies invariance of the left hand side under f_{A}. As for the right-hand side note first that

$$
\begin{aligned}
\left|f_{A}\left(z_{1}\right)-f_{A}\left(z_{2}\right)\right|=\frac{\left|\left(a z_{1}+b\right)\left(c z_{2}+d\right)-\left(a z_{2}+b\right)\left(c z_{1}+d\right)\right|}{\left|c z_{1}+d\right|\left|c z_{2}+d\right|} & \\
& =\frac{\left|z_{1}-z_{2}\right|}{\left|c z_{1}+d\right|\left|c z_{2}+d\right|}
\end{aligned}
$$

Using the identity

$$
\operatorname{Im}\left(f_{A}(z)\right)=\frac{\operatorname{Im}(z)}{|c z+d|^{2}}
$$

we obtain

$$
\begin{array}{r}
\frac{\left|f_{A}\left(z_{1}\right)-f_{A}\left(z_{2}\right)\right|}{2 \sqrt{\operatorname{Im}\left(f_{A}\left(z_{1}\right)\right) \operatorname{Im}\left(f_{A}\left(z_{2}\right)\right)}}=\frac{\left|z_{1}-z_{2}\right|}{\left|c z_{1}+d\right|\left|c z_{2}+d\right|} \cdot \frac{\left|c z_{1}+d\right|\left|c z_{2}+d\right|}{2 \sqrt{\operatorname{Im}\left(z_{1}\right) \operatorname{Im}\left(z_{2}\right)}} \\
=\frac{\left|z_{1}-z_{2}\right|}{2 \sqrt{\operatorname{Im}\left(z_{1}\right) \operatorname{Im}\left(z_{2}\right)}}
\end{array}
$$

(c) The map $f(z)=z-x$ coincides with the map f_{A} for $A=\left(\begin{array}{cc}1 & -x \\ 0 & 1\end{array}\right) \in$ $\operatorname{SL}(2, \mathbb{R})$. So we can apply (b). Note that the points $w_{1}=f\left(z_{1}\right), w_{2}=f\left(z_{2}\right)$
satisfy the requirements in (a). We conclude that

$$
\begin{aligned}
\sinh \left(\frac{1}{2} d\left(z_{1}, z_{2}\right)\right) & =\sinh \left(\frac{1}{2} d\left(w_{1}, w_{2}\right)\right) & & \text { by (b) } \\
& =\frac{\left|w_{1}-w_{2}\right|}{2 \sqrt{\operatorname{Im}\left(w_{1}\right) \operatorname{Im}\left(w_{2}\right)}} & & \text { by (a) } \\
& =\frac{\left|z_{1}-z_{2}\right|}{2 \sqrt{\operatorname{Im}\left(z_{1}\right) \operatorname{Im}\left(z_{2}\right)}} & & \text { by (b). }
\end{aligned}
$$

(d) Using $c(t)=x+R e^{i t}$ we calculate

$$
f(c(t))=\frac{R\left(e^{i t}-1\right)}{R\left(e^{i t}+1\right)}=i \frac{\sin (t / 2)}{\cos (t / 2)}=i \tan (t / 2)
$$

As t runs from 0 to π, $i \tan (t / 2)$ runs from the origin along the positive imaginary axis to infinity.

Note that $f(z)$ coincides with the map f_{A} for

$$
A=\left(\begin{array}{ll}
\frac{1}{\sqrt{2 R}} & -\frac{x+r}{\sqrt{2 R}} \\
\frac{1}{\sqrt{2 R}} & -\frac{x-R}{\sqrt{2 R}}
\end{array}\right) \in \mathrm{SL}(2, \mathbb{R})
$$

So we can apply (b). Note that the points $w_{1}=f\left(z_{1}\right), w_{2}=f\left(z_{2}\right)$ satisfy the requirements in (a). We conclude that

$$
\begin{aligned}
\sinh \left(\frac{1}{2} d\left(z_{1}, z_{2}\right)\right) & =\sinh \left(\frac{1}{2} d\left(w_{1}, w_{2}\right)\right) & & \text { by (b) } \\
& =\frac{\left|w_{1}-w_{2}\right|}{2 \sqrt{\operatorname{Im}\left(w_{1}\right) \operatorname{Im}\left(w_{2}\right)}} & & \text { by (a) } \\
& =\frac{\left|z_{1}-z_{2}\right|}{2 \sqrt{\operatorname{Im}\left(z_{1}\right) \operatorname{Im}\left(z_{2}\right)}} & & \text { by (b). }
\end{aligned}
$$

