Riemannian Geometry IV

Solutions, set 7.

Exercise 18. The formula for the Christoffel symbols is given by

$$
\Gamma_{i j}^{k}=\frac{1}{2} \sum_{l} g^{k l}\left(g_{i l, j}+g_{j l, i}-g_{i j, l}\right)
$$

In the case of the hyperbolic space we have $g_{i j}(x)=\frac{1}{x_{n}^{2}} \delta_{i j}$ and $g^{i j}(x)=x_{n}^{2} \delta_{i j}$. Therefore the above formula simplifies to

$$
\Gamma_{i j}^{k}=\frac{1}{2} g^{k k}\left(g_{i k, j}+g_{j k, i}-g_{i j, k}\right)
$$

We obviously have

$$
g_{a b, c}=-\frac{2}{x_{n}^{3}} \delta_{a b} \delta_{c n}
$$

Therefore, we immediately see that $\Gamma_{i j}^{k}=0$ if $i, j, k \leq n-1$.
We are thus left with the cases when at least one of i, j, k is equal to n. For symmetry reasons $\left(\Gamma_{i j}^{k}=\Gamma_{j i}^{k}\right)$ we only have to consider the case $i \leq j$. Assume first that $k=n$. Then

$$
\Gamma_{i j}^{n}=\frac{1}{2} x_{n}^{2}\left(g_{i n, j}+g_{j n, i}-g_{i j, n}\right)
$$

If $i, j \leq n-1$ we conclude that

$$
\Gamma_{i j}^{n}=-\frac{1}{2} x_{n}^{2} g_{i j, n}=\frac{1}{x_{n}} \delta_{i j} .
$$

If $i \leq n-1$ and $j=n$ we have

$$
\Gamma_{i j}^{n}=0 .
$$

If $i=j=k$ we finally obtain

$$
\Gamma_{n n}^{n}=\frac{1}{2} x_{n}^{2} g_{n n, n}=-\frac{1}{x_{n}} .
$$

Now assume that $k \leq n-1$. Then

$$
\Gamma_{i j}^{k}=\frac{1}{2}\left(g_{i k, j}+g_{j k, i}\right)
$$

Since we already considered the case $i, j, k \leq n-1$ and we assume $i \leq j$ (by symmetry), we only have to consider $j=n$, which yields

$$
\Gamma_{i n}^{k}=\frac{1}{2} x_{n}^{2}\left(g_{i k, n}+g_{n k, i}\right)=\frac{1}{2} x_{n}^{2}\left(-\frac{2}{x_{n}^{3}} \delta_{i k}+0\right)=-\frac{1}{x_{n}} \delta_{i k}
$$

Conclusion: The only non-zero Christoffel symbols are

$$
\Gamma_{11}^{n}=\cdots=\Gamma_{n-1, n-1}^{n}=\frac{1}{x_{n}}, \quad \Gamma_{n n}^{n}=-\frac{1}{x_{n}},
$$

and

$$
\Gamma_{n 1}^{1}=\Gamma_{1 n}^{1}=\Gamma_{n 2}^{2}=\Gamma_{2 n}^{2}=\cdots=\Gamma_{n-1, n}^{n-1}=\Gamma_{n, n-1}^{n-1}=-\frac{1}{x_{n}} .
$$

Not requested: The above calculations show that all covariant derivatives $\nabla_{\frac{\partial}{\partial x_{i}}} \frac{\partial}{\partial x_{j}}$ vanish, unless they are of the form

$$
\nabla_{\frac{\partial}{\partial x_{i}}} \frac{\partial}{\partial x_{i}}=\frac{1}{x_{n}} \frac{\partial}{\partial x_{n}} \quad \text { for } 1 \leq i \leq n-1
$$

or

$$
\nabla_{\frac{\partial}{\partial x_{n}}} \frac{\partial}{\partial x_{i}}=\nabla_{\frac{\partial}{\partial x_{i}}} \frac{\partial}{\partial x_{n}}=-\frac{1}{x_{n}} \frac{\partial}{\partial x_{i}} \quad \text { for } 1 \leq i \leq n-1
$$

or

$$
\nabla_{\frac{\partial}{\partial x_{n}}} \frac{\partial}{\partial x_{n}}=-\frac{1}{x_{n}} \frac{\partial}{\partial x_{n}} .
$$

