Riemannian Geometry IV

Solutions, set 8.

Exercise 19. (a) Note that $T(X, Y)=-T(Y, X)$, so we only have to prove linearity in the first argument. Moreover, we obviously have $T\left(X_{1}+X_{2}, Y\right)=$ $T\left(X_{1}, Y\right)+T\left(X_{2}, Y\right)$. We are left with showing that

$$
T(f X, Y)=f T(X, Y)
$$

The calculation for this goes as follows:

$$
\begin{aligned}
T(f X, Y) & =[f X, Y]-\left(\nabla_{f X} Y-\nabla_{Y} f X\right) \\
& =f[X, Y]-(Y f) X-\left(f \nabla_{X} Y-(Y f) X-f \nabla_{Y} X\right) \\
& =f\left([X, Y]-\left(\nabla_{X} Y-\nabla_{Y} X\right)\right)-(Y f) X+(Y f) X=f T(X, Y) .
\end{aligned}
$$

(b) It is, again, straightforward to check that

$$
\begin{aligned}
& \nabla A\left(X_{1}, \ldots, X_{i}+\tilde{X}_{i}, \ldots, X_{r}, X_{r+1}\right) \\
& \quad=\nabla A\left(X_{1}, \ldots, X_{i}, \ldots, X_{r}, X_{r+1}\right)+\nabla A\left(X_{1}, \ldots, \tilde{X}_{i}, \ldots, X_{r}, X_{r+1}\right)
\end{aligned}
$$

for $i=1,2, \ldots, r+1$. So it remains to show that

$$
\nabla A\left(X_{1}, \ldots, f X_{i}, \ldots, X_{r}, X_{r+1}\right)=f \nabla A\left(X_{1}, \ldots, X_{i}, \ldots, X_{r}, X_{r+1}\right)
$$

for $i=1,2, \ldots, r+1$. Let $i=1,2, \ldots, r$. Then

$$
\begin{aligned}
& \nabla A\left(X_{1}, \ldots, f X_{i}, \ldots, X_{r}, Y\right) \\
& =Y\left(f A\left(X_{1}, \ldots, X_{r}\right)\right)-f \sum_{j=1}^{n} A\left(X_{1}, \ldots, \nabla_{Y} X_{j}, \ldots, X_{r}\right)-(Y f) A\left(X_{1}, \ldots, X_{r}\right) \\
& \quad=f Y\left(A_{1}\left(X_{1}, \ldots, X_{r}\right)\right)-f \sum_{j=1}^{n} A\left(X_{1}, \ldots, \nabla_{Y} X_{j}, \ldots, X_{r}\right) \\
& \\
& \quad=f \nabla A\left(X_{1}, \ldots, X_{r}, Y\right) .
\end{aligned}
$$

Finally, we obtain

$$
\begin{aligned}
& \nabla A\left(X_{1}, \ldots, X_{r}, f Y\right) \\
& \qquad=f Y\left(A\left(X_{1}, \ldots, X_{2}\right)\right)-\sum A\left(X_{1}, \ldots, f \nabla_{Y} X_{j}, \ldots, X_{r}\right) \\
& \\
& =f \nabla A\left(X_{1}, \ldots, X_{r}, Y\right) .
\end{aligned}
$$

(c) Using (b), we obtain

$$
\nabla G(X, Y, Z)=Z(\langle X, Y\rangle)-\left\langle\nabla_{Z} X, Y\right\rangle-\left\langle X, \nabla_{Z} Y\right\rangle
$$

Then $\nabla G \equiv 0$ means precisely that the affine connection ∇ has the "Riemannian property".

Exercise 20. (a) We have

$$
\begin{aligned}
\left.\frac{\partial}{\partial x_{1}}\right|_{\varphi^{-1}\left(x_{1}, x_{2}\right)} & =\left(f^{\prime}\left(x_{1}\right) \cos x_{2}, f^{\prime}\left(x_{1}\right) \sin x_{2}, g^{\prime}\left(x_{1}\right)\right), \\
\left.\frac{\partial}{\partial x_{2}}\right|_{\varphi^{-1}\left(x_{1}, x_{2}\right)} & =\left(-f\left(x_{1}\right) \sin x_{2}, f\left(x_{1}\right) \cos x_{2}, 0\right) .
\end{aligned}
$$

This implies that

$$
\left(g_{i j}\right)=\left(\begin{array}{cc}
\left(f^{\prime}\left(x_{1}\right)\right)^{2}+\left(g^{\prime}\left(x_{1}\right)\right)^{2} & 0 \\
0 & f^{2}\left(x_{1}\right)
\end{array}\right)
$$

and

$$
\left(g^{i j}\right)=\left(\begin{array}{cc}
\frac{1}{\left(f^{\prime}\left(x_{1}\right)\right)^{2}+\left(g^{\prime}\left(x_{1}\right)\right)^{2}} & 0 \\
0 & \frac{1}{f^{2}\left(x_{1}\right)}
\end{array}\right)
$$

Consequently, the Christoffel symbols are calculated as

$$
\begin{aligned}
\Gamma_{11}^{1} & =\frac{1}{2} g^{11}\left(g_{11,1}+g_{11,1}-g_{11,1}\right)=\frac{f^{\prime}\left(x_{1}\right) f^{\prime \prime}\left(x_{1}\right)+g^{\prime}\left(x_{1}\right) g^{\prime \prime}\left(x_{1}\right)}{\left(f^{\prime}\left(x_{1}\right)\right)^{2}+\left(g^{\prime}\left(x_{1}\right)\right)^{2}} \\
\Gamma_{11}^{2} & =\frac{1}{2} g^{22}\left(g_{12,1}+g_{12,1}-g_{11,2}\right)=0 \\
\Gamma_{12}^{1} & =\frac{1}{2} g^{11}\left(g_{11,2}+g_{12,1}-g_{12,1}\right)=0=\Gamma_{21}^{1} \\
\Gamma_{12}^{2} & =\frac{1}{2} g^{22}\left(g_{12,2}+g_{22,1}-g_{12,2}\right)=\frac{f^{\prime}\left(x_{1}\right)}{f\left(x_{1}\right)}=\Gamma_{21}^{2} \\
\Gamma_{22}^{1} & =\frac{1}{2} g^{11}\left(g_{12,2}+g_{12,2}-g_{22,1}\right)=\frac{-f\left(x_{1}\right) f^{\prime}\left(x_{1}\right)}{\left(f^{\prime}\left(x_{1}\right)\right)^{2}+\left(g^{\prime}\left(x_{1}\right)\right)^{2}} \\
\Gamma_{22}^{2} & =\frac{1}{2} g^{22}\left(g_{22,2}+g_{22,2}-g_{22,2}\right)=0
\end{aligned}
$$

This implies that

$$
\begin{aligned}
\nabla_{\frac{\partial}{\partial x_{1}}} \frac{\partial}{\partial x_{1}} & =\frac{f^{\prime}\left(x_{1}\right) f^{\prime \prime}\left(x_{1}\right)+g^{\prime}\left(x_{1}\right) g^{\prime \prime}\left(x_{1}\right)}{\left(f^{\prime}\left(x_{1}\right)\right)^{2}+\left(g^{\prime}\left(x_{1}\right)\right)^{2}} \frac{\partial}{\partial x_{1}} \\
\nabla_{\frac{\partial}{\partial x_{1}}} \frac{\partial}{\partial x_{2}} & =\frac{f^{\prime}\left(x_{1}\right)}{f\left(x_{1}\right)} \frac{\partial}{\partial x_{2}} \\
\nabla_{\frac{\partial}{\partial x_{2}}} \frac{\partial}{\partial x_{1}} & =\frac{f^{\prime}\left(x_{1}\right)}{f\left(x_{1}\right)} \frac{\partial}{\partial x_{2}} \\
\nabla_{\frac{\partial}{\partial x_{2}}} \frac{\partial}{\partial x_{2}} & =\frac{-f\left(x_{1}\right) f^{\prime}\left(x_{1}\right)}{\left(f^{\prime}\left(x_{1}\right)\right)^{2}+\left(g^{\prime}\left(x_{1}\right)\right)^{2}} \frac{\partial}{\partial x_{1}}
\end{aligned}
$$

(b) Note that we have

$$
\gamma_{1}^{\prime}(t)=\left.\frac{\partial}{\partial x_{1}}\right|_{\gamma_{1}(t)} .
$$

This implies that

$$
\begin{aligned}
\left(\frac{D}{d t} \gamma_{1}^{\prime}\right) & (t)=\nabla_{\gamma_{1}^{\prime}(t)} \frac{\partial}{\partial x_{1}}=\left(\nabla_{\frac{\partial}{\partial x_{1}}} \frac{\partial}{\partial x_{1}}\right)\left(\gamma_{1}(t)\right) \\
& =\left.\frac{f^{\prime}\left(x_{1}+t\right) f^{\prime \prime}\left(x_{1}+t\right)+g^{\prime}\left(x_{1}+t\right) g^{\prime \prime}\left(x_{1}+t\right)}{\left(f^{\prime}\left(x_{1}+t\right)\right)^{2}+\left(g^{\prime}\left(x_{1}+t\right)\right)^{2}} \frac{\partial}{\partial x_{1}}\right|_{\gamma_{1}(t)} \in T_{\gamma_{1}(t)} M
\end{aligned}
$$

The condition $\frac{D}{d t} \gamma_{1}^{\prime} \equiv 0$ is equivalent to $f^{\prime}(t) f^{\prime \prime}(t)+g^{\prime}(t) g^{\prime \prime}(t)=0$ for all $t \in(a, b)$. This is equivalent to $\left(f^{\prime}(t)\right)^{2}+\left(g^{\prime}(t)\right)^{2}=$ constant. Since

$$
\left\|c^{\prime}(t)\right\|^{2}=\left(f^{\prime}(t)\right)^{2}+\left(g^{\prime}(t)\right)^{2}
$$

we conclude that $\frac{D}{d t} \gamma_{1}^{\prime}$ vanishes identically if and only if c is parametrized propertional to arc-length. Since c and γ_{1} are obtained from each other by an isometry of \mathbb{R}^{3}, namely a rotation by the angle x_{2} around the vertical Z-axis, c is parametrized proportional to arc-length if and only if γ_{1} is parametrized proportional to arc-length. As explained in Example 25, the property $\frac{D}{d t} \gamma_{1}^{\prime} \equiv$ 0 is equivalent to the fact that γ_{1} is a geodesic.
(c) We have

$$
\gamma_{2}^{\prime}(t)=\left.\frac{\partial}{\partial x_{2}}\right|_{\gamma_{2}(t)} .
$$

This implies that

$$
\begin{aligned}
\left(\frac{D}{d t} \gamma_{2}^{\prime}\right)(t)=\nabla_{\gamma_{2}^{\prime}(t)} \frac{\partial}{\partial x_{2}}=(& \left.\nabla_{\frac{\partial}{\partial x_{2}}} \frac{\partial}{\partial x_{2}}\right)\left(\gamma_{2}(t)\right) \\
& =\left.\frac{-f\left(x_{1}\right) f^{\prime}\left(x_{1}\right)}{\left(f^{\prime}\left(x_{1}\right)\right)^{2}+\left(g^{\prime}\left(x_{1}\right)\right)^{2}} \frac{\partial}{\partial x_{1}}\right|_{\gamma_{2}(t)} \in T_{\gamma_{2}(t)} M .
\end{aligned}
$$

Since $f>0$, the condition $\frac{D}{d t} \gamma_{2}^{\prime} \equiv 0$ is equivalent to $f^{\prime}\left(x_{1}\right)=0$. Since γ_{2} is a parallel of the surface of revolution M and $f_{1}\left(x_{1}\right)$ its radius, the condition $\frac{D}{d t} \gamma_{2}^{\prime} \equiv 0$ is satisfied, e.g., if f assumes a local maximum or minimum at x_{1}. Again, as explained in Example 25, the property $\frac{D}{d t} \gamma_{2}^{\prime} \equiv 0$ is equivalent to the fact that γ_{2} is a geodesic.
(d) Since c is assumed to be arc-length parametrized, we have

$$
\left(f^{\prime}\left(x_{1}\right)\right)^{2}+\left(g^{\prime}\left(x_{1}\right)\right)^{2}=1 \quad \text { for all } x_{1} \in(a, b)
$$

This implies that

$$
\left(g_{i j}\right)=\left(\begin{array}{cc}
1 & 0 \\
0 & f^{2}\left(x_{1}\right)
\end{array}\right)
$$

and therefore, $\sqrt{\operatorname{det}\left(g_{i j}\right)}=f>0$. Since φ is an almost global coordinate chart, we conclude that

$$
\operatorname{vol}(M)=\int_{0}^{2 \pi} \int_{a}^{b} f\left(x_{1}\right) d x_{1} d x_{2}=2 \pi \int_{a}^{b} f\left(x_{1}\right) d x_{1} .
$$

