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Hastings-Levitov model

Let 61,65, -- bei.id. uniformly distributed on [0, 27).
For a particle map f: A — A\ P as defined previously with
f(z) = ez + O(1) near oo, define the rotated map

fo(w) = e f(e~ 0 w).

Let &, =fi0---0fy, then C\ ®,(A) =: K, is the
Hastings-Levitov cluster with n particles, each of capacity c.

N W

e :\95 v \ \l »Z \‘ %,/Z///

, f
e *f; E Figure: A simulation of the
f,,\/’ax\" 2 RS HL(0) process, taken from

= » = Norris and Turner 2012.
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An example of a particle map

One particle we may attach is a slit of length d.
We have an explicit formula for f(w) here, but for simplicity let's
look at the half-plane version.

f:H — H\ (0,2¢2i],

f(w) =+ 2z?—4c.

2cl/2j

—2ct/2 o 2cl/2

_T -
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“Small particle limit” - in what space do we converge?

To get a scaling limit, we allow the logarithmic capacity ¢ of our
particle to tend to zero.

One reasonable question: when we say “limit”, what space does
this limit live in, and in what sense can we converge to it?
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“Small particle limit” - in what space do we converge?

To get a scaling limit, we allow the logarithmic capacity ¢ of our
particle to tend to zero.

One reasonable question: when we say “limit”, what space does
this limit live in, and in what sense can we converge to it?

Definition

Let (Dp)nen be a sequence of domains in C, \ {0} whose
intersection contains a neighbourhood of co.

The kernel of the sequence is the largest domain D containing oo
such that every compact subset of D is a subset of all but finitely
many of the Dps.

If every subsequence of (D,,)nen has the same kernel D, then we
say that D, — D as n — oc.
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Lecture 2: Scaling limits
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Figure: A diagram of a sequence of sets converging in the Carathéodory

sense.

An example of Carath




HL(0) scaling limit

Theorem (Norris and Turner, 2012)

Let K, be the Hastings-Levitov cluster with n particles each of
capacity c. In the limit ¢ — 0 with nc — t, the cluster K,
converges (in the sense of Carathéodory) to a disc of radius e.

This theorem looks daunting to prove. It would be nice if we had
something more explicit to work with than the Carathéodory
topology.

Frankie Higgs f.higgs@lancaster.ac.uk Conformal random growth models Lecture 2: Scaling limits



The Carathéodory convergence theorem

Let S be the set of all conformal maps ¢: D — D for simply
connected domains D C C with 0 € D such that ¢(0) =0,
#/(0) € Roo.

Note that ¢ uniquely determines D, and vice versa.
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The Carathéodory convergence theorem

Let S be the set of all conformal maps ¢: D — D for simply
connected domains D C C with 0 € D such that ¢(0) =0,
#/(0) € Roo.

Note that ¢ uniquely determines D, and vice versa.

Theorem (Carathéodory, 1912)

Let v, 0, €S forn > 1, and D, D, the corresponding domains.
Then D, — D as before if and only if p, — @ uniformly on
compact subsets of A.
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Convergence of the HL(0) maps

Proposition (Norris and Turner, 2012)

Let K, be the HL(0) cluster with n particles of capacity c, and
®,: A — Cy \ K, the corresponding map. Again send ¢ — 0 with
nc — t, then for any compact subset C C A,

sup [®,(w) — e'w| — 0
weC

in probability.
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Two neat tricks

Definition (Logarithmic coordinates)

For(A—f>D)ES, |et5:{z€(C:ezE~D}, and f: A — D the
unique conformal map with limg (), o (f(w) — w) = ¢ (where c
is the logarithmic capacity of D¢).

We can also characterise f by f o exp = exp 31?, an~d so if flL' o
are the first n particle maps for HL(0) then &, =fio---of,.

Definition (The inverse functions)

We write g, = f, L and [, = &1,

This is very useful, because for all z € Ky, the stochastic process
(Fn(z) : 0 < n < N) is Markovian.
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Logarithmic coordinates
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Figure: A drawing of a particle in the usual (left) and logarithmic (right)
coordinates.
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Convergence of maps

Consider a particular event Q(m, ¢) for m € N and small ¢ defined
by two conditions: For all n < m,

(T)n(W) —(w+ nc)’ < & whenever R(w) > 5e.

ozeﬁnand

Mh(z) —(z— nc)‘ < & whenever (z) > nc + 4e.
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Convergence of maps

Consider a particular event Q(m, ¢) for m € N and small ¢ defined
by two conditions: For all n < m,

o |Pn(w)— (w+ nc)’ < € whenever R(w) > 5e.

o z€ D, and |Th(z) — (z — nc)‘ < & whenever (z) > nc + 4e.

We claim that on this event (if € — 0 and m — oo at appropriate
speeds) the cluster converges to a disc of radius e’.
If ¥ = Zz then

|¢,,(z) — e”cZ| = ]exp(d),,(w)) — EXp(W + nc)‘ < €e6€+nc.
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The good event is likely

Proposition (Norris and Turner, 2012)

We use a particle P satisfying, for 6 < 1/3,
PC{zeA:|z—-1|<¢6}, 1+d€P, zeP < ZzcP.

There is a constant A such that for all 20 < e <1 and m>1 we
have

P(m,2)%) < Alm +=7%) exp (‘f\i)

for a constant A.

<

If ¢ — 0 slowly enough as ¢ — 0, then P(Q2(m,e)) — 1, and so we
get our convergence result.
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Proof: outline

Our plan for bounding the probability of the bad event has several
steps:

@ Write the event Q(m,e) (which talks about all w in a
half-plane) as the intersection of events Qg depending on
vertical lines /g = {¢ € C: R(¢) = R}.

° Work only with the MaNrkovian Fn, and deduce the result for
®,, from the result for I',,.

@ On each event, express the difference | ,(z) — (z — nc)| as a
martingale in n, and bound its size.
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Proof: simpler events

Let R = 2(k 4 1)e for some k € N. Let N be the maximal integer
such that R > 2¢ 4+ cN. Consider the stopping time

Tr = inf{n>0: for some z € lg,z € K, or R(T,(z)) < R—nc—e}AN,

and define the event
Qr = { sup  |Fn(z) = (z = ne)| < 5} :
nSTR,ZEZR

[mc/2¢e]
We claim that Q(m,e) 2 (] Qp(k41)e (this is easy thanks to
k=1

the magic of holomorphicity).
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Proof: some technical details

~——

Consider g, the unique conformal map A\ P — A with
liMg(z)-100(8(2) — 2) = —c.

We need a few facts about g. Let go(z) = g(z) — z for
convenience. By Cauchy’s integral formula, we have whenever

R(z) > 9,
1 27

= [ gz i0)do = —c.
27 0

From an earlier section in the paper, when R(z) > 2§ we also
have, writing q(r) = r A r2,

Ac 2Ac

&0(z) +¢| < R(z) -0’ 8o(2)] < FOGED)

where A is a universal constant.
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Proof: a martingale

Fix an R = 2(k + 1)e with 1 < k < [mc/2¢]. For z € D,, define
M,(z) = Tp(z) — (z — nc).
We claim this is a martingale.

Proof

Mn+1(z) = Thy1(2) + (n+1)c
( (Z) ’9n+1)+/‘9n+1+( +1)C
ZEO(F (z) - 19n+1)+r (z) + nc +c,

271— ~
E[Mys1(2) — Ma(2)lfr, - 60] = o /0 &o(Tn(z) — i0)d0 + ¢
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Proof: analysing our martingale

We can bound the increments, so for z € /g and n < Tg, using
our earlier technical estimate,

Moia(2) = Mi(2)] < e < g
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Proof: analysing our martingale

We can bound the increments, so for z € /g and n < Tg, using
our earlier technical estimate,

Ac Ac
Moi1(z) — My(2)| < —= < .
Mria(&) = M) < S S e B

Using a martingale gives us lots of useful tools.

Theorem (Azuma-Hoeffding inequality)

Let (Xn)n>0 be a martingale with Xo = 0, and (xp)n>0 a sequence
of positive reals such that | Xp+1 — Xn| < x, for all n. Then for
A>0,

—)\2
20 k=1%
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Proof: analysing our martingale

We can bound the increments, so for z € /g and n < Tg, using
our earlier technical estimate,

Ac Ac
Mpi1(z) — Mp(2)] £ —= < )
Mra(@) = Mo2) < S <

Using a martingale gives us lots of useful tools.

Theorem (Azuma-Hoeffding inequality)

Let (Xn)n>0 be a martingale with Xo = 0, and (xp)n>0 a sequence
of positive reals such that | Xp+1 — Xn| < x, for all n. Then for
A>0,

—)\2
20 k=1%

2
Applying this, since EnNz_ll (ﬁ) < 22% e have

£

P { sup [Mp(2)| > /2 | <2exp (1)
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Proof: From a pointwise to a global estimate

We have a family of martingales indexed by z € /z. We have a
pointwise bound on each martingale, but can we bound the
supremum on {g?

For z,z' € U let I, = M,(z) — Mp(2’). Consider the function

s(n)=E ( sup |Ik\2> .
kSTR/\n

If we can bound s(N) by something in terms of |z — Z/| then
Kolmogorov's continuity theorem allows us to bound |/,] in terms
of M|z — Z'|7 for some v > 0 and an r.v. M.
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Proof: bounding s(N)

Another useful martingale result is Doob’s L? inequality:

E(|lhf2) < E <sup w) < 4E(|1n[2).
k<n
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Proof: bounding s(N)

Another useful martingale result is Doob’s L? inequality:

E(|lhf2) < E <sup w) < 4E(|1n[2).
k<n

Hence for n < N,

n—1

s(n) < 4E(|lrennl®) = 4> E (|1 — WPk < Tr}Y) . (2)
k=0

Then note
1 — Il = 180(Tk(2) = i0k41) — Bo(Th(2") — i0hs)

_ AAT(2) —Ti(2)| _ 4Ac(lz — 2| + |Ik])
~— g(R—kc—e—9) g(R—kc—e—90)

<
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Proof: bounding s(N) continued

Continuing (?7),

22 |z — 2/ + s(k)
n) <4Y E(|hg1— Il?) < 1284% Z g(R—kec—c— o)
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Proof: bounding s(N) continued

Continuing (?7),

22 |z — 2/ + s(k)
n) <4Y E(|hg1— Il?) < 1284% Z g(R—kec—c— o)

Grénwall s inequality we can go from an inequality of the form
)+ Jy B(s)x(s)ds Vt € [0, r], to the explicit bound

( )<a( exp(f0 ds)
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Proof: bounding s(N) continued

Continuing (?7),

n—1 /12
z—Z'|*+s(k
n) <4 E (|l — hl?) <128A% 22 ’R kl—e£§)2

Grénwall s inequality we can go from an inequality of the form
) + fo s)ds Vt € [0, r], to the explicit bound

( )<a( exp(f0 ds)
By a similar discrete method (and a fiddly calculation), we get
s(N) < Al'c|z — Z/|?/£3, and so

sup |Mi(z) — Mi(2')| < M|z — Z/|M/3 (3)
k<Tgr

for all z,z’ € g, where M is a r.v. with E(M?) < A'c/e3.
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Proof: at last, our uniform bound

Now by Chebyshev's inequality, picking L € N

P ( sup |Mn(z) — Mu(2')| > €/2 for z,Z' € lg with |z — 2| < 7T/I_>

n<Tg

<r(w=5(5)) < (7% g
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Proof: at last, our uniform bound

Now by Chebyshev's inequality, picking L € N

P ( sup |Mn(z) — Mu(2')| > €/2 for z,Z' € lg with |z — 2| < 7T/I_>

n<Tg

<r(w=5(5)) < (7% g

Combining this with (??), (and using 2mi-periodicity) we get

P sup
n< TR,ZEER

Then we get the claimed bound on this probability by choosing an
optimal L. O

7r>2/3 Ac
L

To(z) = (z— nc)‘ > 5) < Le /Ay ( =
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Moral #1: conformal growth is cool

We have seen that the conformal growth setting gives us access to
powerful techniques:

@ The Carathéodory convergence theorem lets us turn a
geometric question about clusters into an analytic question
about maps.

@ We have explicit estimates for particle maps and their
derivatives.

@ Harmonic measure can be estimated in terms of the derivative
of the cluster map.

@ We can change coordinates for convenience much more
explicitly than in lattice models.

e For HL(0), there is a Markov process associated with the
inverse of the cluster map.
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Moral #2: other areas are cool too

We also saw lots of useful applications of techniques from other
areas of probability and analysis more generally:

@ We deal with harmonic rather than simply smooth maps so,
for example, we can use the maximum principle to bound
errors globally using local information.

@ We can relate quantities we want to estimate with a
martingale evolving as we add more particles.

@ We have all the “standard” martingale bounds (Doob's
inequalities, the Azuma-Hoeffding inequality...), and for other
models we can use martingale convergence theorems.

@ We also often make use of the clever tricks often seen in

stochastic analysis (Gronwall's inequality, Kolmogorov's
lemma, ...).
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