
Conformal random growth models
Lecture 2: Scaling limits

Frankie Higgs and George Liddle

Lancaster University

LMS PiNE Lectures, September 2020

Frankie Higgs f.higgs@lancaster.ac.uk Conformal random growth models Lecture 2: Scaling limits



Hastings-Levitov model

Let θ1, θ2, · · · be i.i.d. uniformly distributed on [0, 2π).
For a particle map f : ∆→ ∆ \ P as defined previously with
f (z) = ecz + O(1) near ∞, define the rotated map

fn(w) = e iθn f (e−iθnw).

Let Φn = f1 ◦ · · · ◦ fn, then C \ Φn(∆) =: Kn is the
Hastings-Levitov cluster with n particles, each of capacity c.

Figure: A simulation of the
HL(0) process, taken from
Norris and Turner 2012.
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An example of a particle map

One particle we may attach is a slit of length d .
We have an explicit formula for f (w) here, but for simplicity let’s
look at the half-plane version.

f : H→ H \ (0, 2c1/2i ],

f (w) =
√
z2 − 4c.

f

2c1/2i

00 2c1/2−2c1/2

Figure: Not included yet: an illustration of this map.Frankie Higgs f.higgs@lancaster.ac.uk Conformal random growth models Lecture 2: Scaling limits



“Small particle limit” - in what space do we converge?

To get a scaling limit, we allow the logarithmic capacity c of our
particle to tend to zero.
One reasonable question: when we say “limit”, what space does
this limit live in, and in what sense can we converge to it?

Definition

Let (Dn)n∈N be a sequence of domains in C∞ \ {0} whose
intersection contains a neighbourhood of ∞.
The kernel of the sequence is the largest domain D containing ∞
such that every compact subset of D is a subset of all but finitely
many of the Dns.
If every subsequence of (Dn)n∈N has the same kernel D, then we
say that Dn → D as n→∞.
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An example of Carathéodory convergence

n→∞

2π/n

Figure: A diagram of a sequence of sets converging in the Carathéodory
sense.
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HL(0) scaling limit

Theorem (Norris and Turner, 2012)

Let Kn be the Hastings-Levitov cluster with n particles each of
capacity c. In the limit c→ 0 with nc→ t, the cluster Kn

converges (in the sense of Carathéodory) to a disc of radius et .

This theorem looks daunting to prove. It would be nice if we had
something more explicit to work with than the Carathéodory
topology.
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The Carathéodory convergence theorem

Let S be the set of all conformal maps ϕ : D→ D for simply
connected domains D ( C with 0 ∈ D such that ϕ(0) = 0,
ϕ′(0) ∈ R>0.
Note that ϕ uniquely determines D, and vice versa.

Theorem (Carathéodory, 1912)

Let ϕ,ϕn ∈ S for n ≥ 1, and D,Dn the corresponding domains.
Then Dn → D as before if and only if ϕn → ϕ uniformly on
compact subsets of ∆.
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Convergence of the HL(0) maps

Proposition (Norris and Turner, 2012)

Let Kn be the HL(0) cluster with n particles of capacity c, and
Φn : ∆→ C∞ \Kn the corresponding map. Again send c→ 0 with
nc→ t, then for any compact subset C ⊂ ∆,

sup
w∈C
|Φn(w)− etw | → 0

in probability.

Frankie Higgs f.higgs@lancaster.ac.uk Conformal random growth models Lecture 2: Scaling limits



Two neat tricks

Definition (Logarithmic coordinates)

For (∆
f→ D) ∈ S, let D̃ = {z ∈ C : ez ∈ D}, and f̃ : ∆̃→ D̃ the

unique conformal map with lim<(w)→+∞(f̃ (w)− w) = c (where c
is the logarithmic capacity of Dc).

We can also characterise f̃ by f ◦ exp = exp ◦ f̃ , and so if f1, · · · , fn
are the first n particle maps for HL(0) then Φ̃n = f̃1 ◦ · · · ◦ f̃n.

Definition (The inverse functions)

We write gn = f −1n and Γn = Φ−1n .

This is very useful, because for all z ∈ K c
N the stochastic process

(Γn(z) : 0 ≤ n ≤ N) is Markovian.

Frankie Higgs f.higgs@lancaster.ac.uk Conformal random growth models Lecture 2: Scaling limits



Logarithmic coordinates

Figure: A drawing of a particle in the usual (left) and logarithmic (right)
coordinates.
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Convergence of maps

Consider a particular event Ω(m, ε) for m ∈ N and small ε defined
by two conditions: For all n ≤ m,∣∣∣Φ̃n(w)− (w + nc)

∣∣∣ < ε whenever <(w) ≥ 5ε.

z ∈ D̃n and
∣∣∣Γ̃n(z)− (z − nc)

∣∣∣ < ε whenever <(z) ≥ nc + 4ε.

We claim that on this event (if ε→ 0 and m→∞ at appropriate
speeds) the cluster converges to a disc of radius et .
If ew = z then

|Φn(z)− encz | = | exp(Φ̃n(w))− exp(w + nc)| < εe6ε+nc.
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The good event is likely

Proposition (Norris and Turner, 2012)

We use a particle P satisfying, for δ ≤ 1/3,

P ⊆ {z ∈ ∆ : |z − 1| ≤ δ}, 1 + δ ∈ P, z ∈ P ⇐⇒ z ∈ P.

There is a constant A such that for all 2δ ≤ ε ≤ 1 and m ≥ 1 we
have

P(Ω(m, ε)c) ≤ A(m + ε−2) exp

(
− ε

3

Ac

)
for a constant A.

If ε→ 0 slowly enough as c→ 0, then P(Ω(m, ε))→ 1, and so we
get our convergence result.
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Proof: outline

Our plan for bounding the probability of the bad event has several
steps:

Write the event Ω(m, ε) (which talks about all w in a
half-plane) as the intersection of events ΩR depending on
vertical lines `R = {ζ ∈ C : <(ζ) = R}.
Work only with the Markovian Γ̃n, and deduce the result for
Φ̃n from the result for Γ̃n.

On each event, express the difference
∣∣∣Γ̃n(z)− (z − nc)

∣∣∣ as a

martingale in n, and bound its size.
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Proof: simpler events

Let R = 2(k + 1)ε for some k ∈ N. Let N be the maximal integer
such that R ≥ 2ε+ cN. Consider the stopping time

TR = inf{n ≥ 0 : for some z ∈ `R , z ∈ K̃n or <(Γ̃n(z)) ≤ R−nc−ε}∧N,

and define the event

ΩR =

{
sup

n≤TR ,z∈`R
|Γ̃n(z)− (z − nc)| < ε

}
.

We claim that Ω(m, ε) ⊇
dmc/2εe⋂
k=1

Ω2(k+1)ε (this is easy thanks to

the magic of holomorphicity).
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Proof: some technical details

Consider g̃ , the unique conformal map ∆̃ \ P → ∆̃ with
lim<(z)→+∞(g̃(z)− z) = −c.
We need a few facts about g̃ . Let g̃0(z) = g̃(z)− z for
convenience. By Cauchy’s integral formula, we have whenever
<(z) > δ,

1

2π

∫ 2π

0
g̃0(z − iθ) dθ = −c.

From an earlier section in the paper, when <(z) ≥ 2δ we also
have, writing q(r) = r ∧ r2,

|g̃0(z) + c| ≤ Ac

<(z)− δ
, |g̃ ′0(z)| ≤ 2Ac

q(<(z)− δ)
,

where A is a universal constant.

Frankie Higgs f.higgs@lancaster.ac.uk Conformal random growth models Lecture 2: Scaling limits



Proof: a martingale

Fix an R = 2(k + 1)ε with 1 ≤ k ≤ dmc/2εe. For z ∈ D̃n, define

Mn(z) = Γ̃n(z)− (z − nc).

We claim this is a martingale.

Proof.

Mn+1(z) = Γ̃n+1(z) + (n + 1)c

= g̃(Γ̃n(z)− iθn+1) + iθn+1 + (n + 1)c

= g̃0(Γ̃n(z)− iθn+1) + Γ̃n(z) + nc + c,

and so

E[Mn+1(z)−Mn(z)|θ1, · · · , θn] =
1

2π

∫ 2π

0
g̃0(Γ̃n(z)− iθ) dθ + c

= 0.
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Proof: analysing our martingale

We can bound the increments, so for z ∈ `R and n < TR , using
our earlier technical estimate,

|Mn+1(z)−Mn(z)| ≤ Ac

<(Γ̃n(z))− δ
≤ Ac

R − nc− ε− δ
.

Using a martingale gives us lots of useful tools.

Theorem (Azuma-Hoeffding inequality)

Let (Xn)n≥0 be a martingale with X0 = 0, and (xn)n≥0 a sequence
of positive reals such that |Xn+1 − Xn| ≤ xn for all n. Then for
λ > 0,

P(|Xn| ≥ λ) ≤ 2 exp

(
−λ2

2
∑n−1

k=1 x
2
k

)

Applying this, since
∑N−1

n=1

(
Ac

R−nc−ε−δ

)2
≤ 2A2c

ε , we have

P

(
sup
n≤T
|Mn(z)| ≥ ε/2

)
≤ 2 exp

(
−ε3

16A2c

)
(1)
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Proof: From a pointwise to a global estimate

We have a family of martingales indexed by z ∈ `R . We have a
pointwise bound on each martingale, but can we bound the
supremum on `R?
For z , z ′ ∈ `R let In = Mn(z)−Mn(z ′). Consider the function

s(n) = E

(
sup

k≤TR∧n
|Ik |2

)
.

If we can bound s(N) by something in terms of |z − z ′| then
Kolmogorov’s continuity theorem allows us to bound |In| in terms
of M|z − z ′|γ for some γ > 0 and an r.v. M.
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Proof: bounding s(N)

Another useful martingale result is Doob’s L2 inequality:

E(|In|2) ≤ E

(
sup
k≤n
|Ik |2

)
≤ 4E(|In|2).

Hence for n ≤ N,

s(n) ≤ 4E(|ITR∧n|
2) = 4

n−1∑
k=0

E
(
|Ik+1 − Ik |21{k ≤ TR}

)
. (2)

Then note

|Ik+1 − Ik | = |g̃0(Γ̃k(z)− iθk+1)− g̃0(Γ̃k(z ′)− iθk+1)|

≤ 4Ac|Γ̃k(z)− Γ̃k(z ′)|
q(R − kc− ε− δ)

≤ 4Ac(|z − z ′|+ |Ik |)
q(R − kc− ε− δ)

.
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Proof: bounding s(N) continued

Continuing (??),

s(n) ≤ 4
n−1∑
k=0

E
(
|Ik+1 − Ik |2

)
≤ 128A2c2

n−1∑
k=0

|z − z ′|2 + s(k)

q(R − kc− ε− δ)2
.

Grönwall’s inequality: we can go from an inequality of the form
x(t) ≤ α(t) +

∫ t
0 β(s)x(s) ds ∀t ∈ [0, r ], to the explicit bound

x(r) ≤ α(r) exp
(∫ r

0 β(s) ds
)
.

By a similar discrete method (and a fiddly calculation), we get
s(N) ≤ A′c|z − z ′|2/ε3, and so

sup
k≤TR

|Mk(z)−Mk(z ′)| ≤ M|z − z ′|1/3 (3)

for all z , z ′ ∈ `R , where M is a r.v. with E(M2) ≤ A′c/ε3.
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Proof: at last, our uniform bound

Now by Chebyshev’s inequality, picking L ∈ N

P

(
sup
n≤TR

|Mn(z)−Mn(z ′)| ≥ ε/2 for z , z ′ ∈ `R with |z − z ′| ≤ π/L

)

≤ P

(
M ≥ ε

2

(
L

π

)1/3
)
≤
(π
L

)2/3 Ac
ε5
. (4)

Combining this with (??), (and using 2πi-periodicity) we get

P

(
sup

n≤TR ,z∈`R

∣∣∣Γ̃n(z)− (z − nc)
∣∣∣ ≥ ε) ≤ Le−ε

3/Ac +
(π
L

)2/3 Ac
ε5
.

Then we get the claimed bound on this probability by choosing an
optimal L. �
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Moral #1: conformal growth is cool

We have seen that the conformal growth setting gives us access to
powerful techniques:

The Carathéodory convergence theorem lets us turn a
geometric question about clusters into an analytic question
about maps.

We have explicit estimates for particle maps and their
derivatives.

Harmonic measure can be estimated in terms of the derivative
of the cluster map.

We can change coordinates for convenience much more
explicitly than in lattice models.

For HL(0), there is a Markov process associated with the
inverse of the cluster map.

Frankie Higgs f.higgs@lancaster.ac.uk Conformal random growth models Lecture 2: Scaling limits



Moral #2: other areas are cool too

We also saw lots of useful applications of techniques from other
areas of probability and analysis more generally:

We deal with harmonic rather than simply smooth maps so,
for example, we can use the maximum principle to bound
errors globally using local information.

We can relate quantities we want to estimate with a
martingale evolving as we add more particles.

We have all the “standard” martingale bounds (Doob’s
inequalities, the Azuma-Hoeffding inequality...), and for other
models we can use martingale convergence theorems.

We also often make use of the clever tricks often seen in
stochastic analysis (Grönwall’s inequality, Kolmogorov’s
lemma, ...).
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