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Notation

Suppose that Z = (Zn; n ∈ Z+) is a real-valued, discrete-time
stochastic process adapted to a filtration (Fn; n ∈ Z+).

The process Zn is a martingale (with respect to the given
filtration) if, for all n ≥ 0,

(i) E [|Zn|] <∞, and
(ii) E [Zn+1 − Zn | Fn] = 0.

If in (ii) ‘=’ is replaced by ‘≥’ (respectively, ‘≤’), then Zn is called
a submartingale (respectively, supermartingale).



Martingale background

Theorem 1 (Convergence of non-negative
supermartingales)
Suppose Zn ≥ 0 is a supermartingale. Then there is an
integrable random variable Z such that Zn → Z a.s. as n→∞,
and E[Z ] ≤ E[Z0].

Theorem 2 (Optional stopping for supermartingales)
Suppose Zn ≥ 0 is a supermartingale and σ ≤ τ are stopping
times. Then E[Zτ ] ≤ E[Zσ] <∞ and E[Zτ | Fσ] ≤ Zσ a.s.



Displacement and exit estimates

Theorem 3
Let Zn be an integrable Fn-adapted process on R+. Suppose
that for some B ∈ R+,

E[Zn+1 − Zn | Fn] ≤ B a.s.

Then for any step n and any x > 0,

P
[

max
0≤m≤n

Zm ≥ z
]
≤ Bn + E[Z0]

x
.



Displacement and exit estimates

Proof of Theorem 3

Let τ be a stopping time. Then

E
[
Z(m+1)∧τ − Zm∧τ | Fm

]
≤ B 1{τ > m}.

Taking expectations on both sides we get

E
[
Z(m+1)∧τ

]
− E [Zm∧τ ] ≤ B P (τ > m) .

Then summing from m = 0 to m = n − 1 gives

E [Zn∧τ ]− E [Z0] ≤ B
n−1∑
m=0

P (τ > m) ≤ B E[τ ].



Displacement and exit estimates

Take τ = n ∧ σx . Then

Bn ≥ B E[τ ] ≥ E [Zn∧σx ]− E [Z0] .

But since Zn ≥ 0 we have

Zn∧σx ≥ x1{σx ≤ n} = x1
{

max
0≤m≤n

Zm ≥ x
}

and the result follows. �



Example

Let Sn =
∑n

k=1 θk be simple symmetric random walk on Z. Let
Zn = S2

n . Then
Zn+1 − Zn = S2

n+1 − S2
n = (Sn + θn+1)2 − S2

n

= 2Snθn+1 + θ2
n+1.

So
E[Zn+1 − Zn | Fn] = 2SnE[θn+1] + E[θ2

n+1] = 1.
Hence we have

P
(

max
0≤m≤n

|Sn| ≥ x
)

= P
(

max
0≤m≤n

Zm ≥ x2
)

≤ n
x2 for x > 0.

In this case, Zn is a submartingale, so one could use the
Doob’s inequality to get the same result.



Example

Let u(n) = n
1
2 (log n)

1
2 +ε for ε > 0. Then

P
(

max
0≤m≤n

|Sm| ≥ u(n)

)
≤ (log n)−1−2ε).

Although this seems a rather weak bound, we can still extract a
reasonable result by considering the subsequence n = 2k ,
k ≥ 0.

Borel-Cantelli shows that max0≤m≤2k |Sm| ≤ u(2k ) for all but
finitely many k , a.s.



Example

Any n ∈ N has 2kn ≤ n ≤ 2kn+1 with kn →∞ as n→∞.

Hence for all but finitely many n,

max
0≤m≤n

|Sm| ≤ max
0≤m≤2kn+1

|Sm| ≤ u(2 · 2kn ) ≤ 2u(n).

So we have show that for any ε > 0, for all but finitely many n,

max
0≤m≤n

|Sm| ≤ n
1
2 (log n)

1
2 +ε.
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Recurrence classification

Suppose that Xn is an irreducible Markov chain on a countable
state space Σ.

Recurrent: With probability 1, for every x ∈ Σ, Xn = x
infinitely often.
Transient: With probability 1, for every x ∈ Σ, Xn = x only
finitely often.
Positive recurrent: There exists a probability distribution π
on Σ such that

lim
n→∞

1
n

n∑
k=0

1{Xk = x} = π(x), a.s.,

for all x ∈ Σ. Necessarily π is a stationary distribution.
( P(Xn = x)→ π(x) with some additional aperiodicity. )



Recurrence classification
Equivalent definitions (uses irreducibility and strong Markov
heavily):
For a fixed A ⊆ Σ, we define that τA = min{n ≥ 0 : Xn ∈ A}
(stopping / hitting time). We call:

Xn recurrent if for some finite A,

P(τA <∞ | Xn = x) = 1 for all x .

Xn transient if for some non-empty A,

P(τA =∞ | Xn = x) > 0 for all x /∈ A.

Xn positive recurrent if for some finite A,

E[τA | Xn = x ] <∞ for all x .



Recurrence classification

Theorem 4 (Pólya’s Recurrence Theorem)

The simple symmetric random walk on Zd is recurrent in one or
two dimensions, but transient in three or more dimensions.

A quote by Shizuo Kakutani, somewhat ‘equivalent’ to the
theorem.

‘A drunken man will find his way home,
but a drunken bird may get lost forever.’



Random walk in 2-dimensions

3 simulations on 2-dimensional simple symmetric random walk
with 105 steps



Random walk in 3-dimensions

3 simulations on 3-dimensional simple symmetric random walk
with 105 steps



Recurrence and transience criteria

Theorem 5 (Recurrence criterion)
An irreducible Markov chain Xn on a countably infinite state
space Σ is recurrent if and only if there exist a function
f : Σ→ R+ and a finite non-empty set A ⊂ Σ such that

E [f (Xn+1)− f (Xn) | Xn = x ] ≤ 0 for all x ∈ Σ\A,

and f (x)→∞ as x →∞.

A weaker version of the ‘if’ part of this theorem is due to Foster
(1953), then improved by Pakes (1969), and the ‘only if’ part by
Mertens et al. (1978).



Example

Let Sn be simple symmetric random walk on Z2, and consider

f (x) =
(

log(1 + ||x ||2)
)γ

for γ ∈ (0,1). A Taylor’s theorem computation gives

E [f (Sn+1)− f (Sn) | Sn = x ] =

γ(γ − 1)||x ||−2
(

log
(

1 + ||x ||2
))γ−1

(1 + o(1))

which is < 0 for ||x || sufficiently large. Hence Sn is recurrent.



Recurrence and transience criteria
Proof of Theorem 5 (‘if’ part)
Take X0 = x ∈ Σ. Set Yn = f (Xn∧τA). Then Yn is a non-negative
supermartingale. Hence Yn → Y∞ a.s. for some Y∞, and

E[Y∞ | X0 = x ] ≤ E[Y0 | X0 = x ] = f (x). (1)

On the other hand, since f →∞, it holds that the set
{y ∈ Σ : f (y) ≤ M} is finite for any M ∈ R+, so irreducibility
implies that lim supn→∞ f (Xn) = +∞ a.s. on {τA =∞}.
Hence on {τA =∞} we must have Y∞ = limn→∞ Yn = +∞.
This would contradict the inequality (1) if we assume
P(τA =∞ | X0 = x) > 0, because then E[Y∞ | X0 = x ] =∞.
Hence P(τA =∞ | X0 = x) = 0 for all x ∈ Σ, which implies
recurrence. �



Recurrence and transience criteria

Theorem 6 (Transience criterion)
An irreducible Markov chain Xn on a countably infinite state
space Σ is transient if and only if there exist a function
f : Σ→ R+ and a non-empty set A ⊂ Σ such that

E [f (Xn+1)− f (Xn) | Xn = x ] ≤ 0 for all x ∈ Σ\A,

and f (y) < infx∈A f (x) for at least one y ∈ Σ\A.

A weaker version of this theorem is due to Foster(1953), then
improved by Mertens et al. (1978).



Example

Let Sn be simple symmetric random walk on Zd . Let α > 0 and
consider the function f : Zd → (0,1] defined by f (0) = 1 and
f (x) = ||x ||−2α for x 6= 0.

A Taylor’s theorem computation gives

E [f (Sn+1)− f (Sn) | Sn = x ] =
α

d
||x ||−2−2α (2(α + 1)− d + o(1))

which is < 0 for ||x || sufficiently large provided we choose
α ∈

(
0, d−2

2

)
, which we may do for any d ≥ 3.

Thus the simple symmetric random walk is transient if d ≥ 3.



Recurrence and transience criteria

Lemma 7
Let Xn be a Markov chain on state space Σ. Suppose
f : Σ→ R+ is measurable, and A ⊆ Σ is such that

E [f (Xn+1)− f (Xn) | Fn] ≤ 0 on {Xn ∈ Σ\A}.

Then

P(τA <∞ | F0) ≤ f (X0)

infx∈A f (x)
.



Recurrence and transience criteria
Proof of Lemma 7
Set Yn = f (Xn∧τA). Then Yn is a non-negative supermartingale,
so Yn → Y∞ a.s., and by optional stopping

Y0 ≥ E[Y∞ | F0] ≥ E[Y∞1{τA <∞} | F0].

Here

Y∞1{τA <∞} = lim
n→∞

Yn1{τA <∞}

= f (XτA)1{τA <∞}
≥ inf

x∈A
f (x)1{τA <∞}

so
f (X0) = Y0 ≥ P(τA <∞) inf

x∈A
f (x).

�



Recurrence and transience criteria

Proof of Theorem 6 (‘if’ part)

With y ∈ Σ\A as stated, the lemma shows that

P(τA <∞ | X0 = y) ≤ f (y)

infx∈A f (x)
< 1,

which establishes transience. �
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Positive recurrence

Theorem 8
Let Zn ∈ R+ be integrable and Fn-adapted, and let τ be a
stopping time. Assume that for some ε > 0,

E [Zn+1 − Zn | Fn] ≤ −ε on {τ > n}.

Then

E[τ ] ≤ E[Z0]

ε
<∞.



Positive recurrence

Proof
We may rewrite the condition as

E
[
Z(m+1)∧τ − Zm∧τ | Fm

]
≤ −ε1{τ > m}.

Taking expectations, we get
E[Z(m+1)∧τ ]− E[Zm∧τ ] ≤ −εP(τ > m).

Hence

0 ≤ E[Z(n+1)∧τ ] ≤ E[Z0]− ε
n∑

m=0

P(τ > m).

Taking n→∞ we have

E[τ ] = lim
n→∞

n∑
m=0

P(τ > m) ≤ E[Z0]

ε
<∞.

�



Positive recurrence

Theorem 9 (Foster’s criterion)
An irreducible Markov chain Xn on a countably infinite state
space Σ is positive recurrent if and only if there exist a function
f : Σ→ R+, a finite non-empty set A ⊂ Σ, and ε > 0, such that

E [f (Xn+1)− f (Xn) | Xn = x ] ≤ −ε for x /∈ A,
E [f (Xn+1) | Xn = x ] <∞ for x ∈ A.

A weaker version of this theorem is due to Foster(1953), then
improved by Mertens et al. (1978) and Mauldon (1957).

Proof (‘if’ part)
Apply Theorem 8 to the process f (Xn) with stopping time
τA. �



Example
The following example is due to Klein Haneveld and Pittenger
(1990).
Let ξn, n ≥ 0 be a Markov chain on Σ ⊆ R2

+ with increments

θn = ξn+1 − ξn. Write ξn =
(
ξ

(1)
n , ξ

(2)
n

)
.

Let τ = min
{

n ≥ 0 : ξ
(1)
n ξ

(2)
n = 0

}
, the hitting time of

Σ0 =
{

(x , y) ∈ R2
+ : xy = 0

}
.

Suppose that
E [θn | ξn = x ] = 0 for x ∈ Σ\Σ0

E
[
||θn||2

∣∣∣ ξn = x
]
≤ B for x ∈ Σ\Σ0

and
E
[(
ξ

(1)
n+1 − ξ

(1)
n

)(
ξ

(2)
n+1 − ξ

(2)
n

) ∣∣∣ ξn = x
]

= ρ for x ∈ Σ\Σ0

for a constant covariance ρ.



Example

Then

E
[
ξ

(1)
n+1ξ

(2)
n+1 − ξ

(1)
n ξ

(2)
n

∣∣∣ ξn = x
]

= E
[(
ξ

(1)
n+1 − ξ

(1)
n

)(
ξ

(2)
n+1 − ξ

(2)
n

) ∣∣∣ ξn = x
]

+ x (1)E
[
ξ

(2)
n+1 − ξ

(2)
n

∣∣∣ ξn = x
]

+ x (2)E
[
ξ

(1)
n+1 − ξ

(1)
n

∣∣∣ ξn = x
]

= ρ.

So if ρ < 0 we may apply Theorem 9 with Xn = ξ
(1)
n ξ

(2)
n to

deduce that E[τ ] <∞.

Remarkably one can also compute E[τ ] when it exists.



Example
Suppose that E[τ ] <∞.

For k ∈ {1,2}, ξ(k)
n∧τ is a non-negative martingale that

converges to ξ(k)
τ .

The associated quadratic variation process satisfies
〈ξ(k)〉n∧τ ≤ B(n ∧ τ) so the martingales ξ(k)

n∧τ are uniformly
bounded in L2, and hence converge in L2.

Hence ξ(1)
n∧τξ

(2)
n∧τ converges in L1, and

lim
n→∞

E
[
ξ

(1)
n∧τξ

(2)
n∧τ

]
= E

[
ξ(1)
τ ξ(2)

τ

]
= 0

Moreover, ξ(1)
n∧τξ

(2)
n∧τ − ρ(n ∧ τ) is a martingale, so

ξ
(1)
0 ξ

(2)
0 = E

[
ξ

(1)
n∧τξ

(2)
n∧τ

]
− ρE[n ∧ τ ].



Example
Taking n→∞ and using monotone convergence we get

E[τ ] = lim
n→∞

E[n ∧ τ ] =
ξ

(1)
0 ξ

(2)
0
|ρ|

when ρ < 0.

A similar argument shows that the result E[τ ] <∞ when ρ < 0
is sharp: if ρ ≥ 0 and ξ0 /∈ Σ0 then E[τ ] =∞.

For the purpose of deriving a contradiction, suppose E[τ ] <∞.

Now ξ
(1)
n∧τξ

(2)
n∧τ is a submartingale, which converges in L1 as

above. Hence

0 = E
[
ξ

(1)
n∧τξ

(2)
n∧τ

]
≥ E

[
ξ

(1)
0 ξ

(2)
0

]
> 0,

which is a contradiction.
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Example: The semi-infinite strip model



Non-homogeneous Random walk on semi-infinite strip

Let S be a finite non-empty set.

Let Σ be a subset of R+ × S that is locally finite, i.e.,
Σ ∩ ([0, r ]× S) is finite for all r ∈ R+. E.g. Σ = Z+ × S.

Define for each k ∈ S the line Λk := {x ∈ R+ : (x , k) ∈ Σ}.
Suppose that for each k ∈ S the line Λk is unbounded.

Define the projection of Σ to be Λ :=
⋃

k∈S Λk .



Non-homogeneous Random walk on semi-infinite strip

Suppose that (Xn, ηn), n ∈ Z+, is a time-homogeneous,
irreducible Markov chain on Σ, a locally finite subset of R+ × S.

Neither coordinate is assumed to be Markov.



Motivating examples

We can view S as a set of internal states, influencing motion on
the lines R+. E.g.,

Operations research: modulated queues
(S = states of server);

Economics: regime-switching processes
(S contains market information);

Physics: physical processes with internal degrees of freedom
(S = energy/momentum states of particle).



Classification of the random walk

Lemma 10

Let (Xn, ηn) be a time-homogeneous irreducible Markov chain
on the state-space Σ ∈ R+ × S. Exactly one of the following
holds:

(i) If (Xn, ηn) is recurrent, then P[Xn = x i .o.] = 1 for any
x ∈ Λ.

(ii) If (Xn, ηn) is transient, then P[Xn = x i .o.] = 0 for any
x ∈ Λ, and Xn →∞ a.s.

In the former case, we call (Xn) recurrent, and in the latter
case, we call (Xn) transient.



Classification of the random walk

Notice that the process (Xn) is not a Markov chain so this is
different from our usual definition.

This is a lemma but not a definition because it is not trivial that
the dichotomy of recurrence and transience holds, i.e. the
probability must be 0 or 1 rather than other values.



Classification of the random walk
Lemma 11

Let (Xn, ηn) be a time-homogeneous irreducible Markov chain
on the state-space Σ. There exists a unique measure
ν : Λ→ R+ such that

lim
n→∞

1
n

n−1∑
k=0

1{Xk = x} = ν(x), a.s.

Exactly one of the following holds.
(i) If (Xn, ηn) is null, then ν(x) = 0 for all x ∈ Λ.
(ii) If (Xn, ηn) is positive recurrent, then ν(x) > 0 for all x ∈ Λ

and
∑

x∈Λ ν(x) = 1.
If Xn is recurrent, then we say that it is null recurrent if (i) holds
and positive recurrent if (ii) holds.



Classification of the random walk

This is again a lemma because it is not trivial that the case that
ν(x) = 0 for some x and ν(x) > 0 for some other x would not
happen.

The proof relies on careful separation of the two coordinates of
the state space.



Assumptions

Moments bound on jumps of Xn:
(Bp) ∃ Cp <∞ s.t.

E[|Xn+1 − Xn|p | (Xn, ηn) = (x , i)] ≤ Cp.

Notation for the expected displacements in the X -coordinate:

µi(x) = E[Xn+1 − Xn | (Xn, ηn) = (x , i)].



Assumptions (cont.)

Define
qij(x) = P[ηn+1 = j | (Xn, ηn) = (x , i)].

ηn is “close to being Markov” when Xn is large:

(Q∞) qij = limx→∞ qij(x) exists for all i , j ∈ S
and (qij) is irreducible.

Let π be the unique stationary distribution on S corresponding
to (qij).



Constant drift

Constant-type drift condition:

(DC) ∃ di ∈ R for all i ∈ S such that

µi(x) = di + o(1).



Constant drift



Constant drift



Constant drift



Constant drift



Recurrence classification for constant drift
The following theorem is from Georgiou, Wade (2014),
extending slightly earlier work of Malyshev (1972), Falin (1988),
and Fayolle et al. (1995).

Theorem 12

Suppose that (Bp) holds for some p > 1 and conditions (Q∞)
and (DC) hold. The following sufficient conditions apply.

If
∑

i∈S diπi > 0, then (Xn, ηn) is transient.
If
∑

i∈S diπi < 0, then (Xn, ηn) is positive-recurrent.
Here πi is the unique stationary distribution on S.

The critical case
∑

i∈S diπi = 0 is tortuous and gruelling, but
intriguing...



Lyapunov function

Our analysis for the constant drift case is based on various
Lyapunov functions. In here I present a choice to prove the
positive-recurrent side. Take g : Σ→ (0,∞) where

g(x , i) := x + bi

for some bi ∈ R.



Increment moment estimates

We will need the following increment moment estimates for our
Lyapunov function.

Lemma 13

Suppose that (Bp) holds for some p > 1 and conditions (Q∞)
and (DC) hold. Then we have, as x →∞,

E [g(X1, η1)− g(X0, η0) | (X0, η0) = (x , i)]

= di +
∑
j∈S

(bj − bi)qij + o(1).



Increment moment estimates

Proof of lemma

Using the condition (DC) that

E [X1 − X0 | (X0, η0) = (x , i)] = di + o(1),

we get

E [g(X1, η1)− g(X0, η0) | (X0, η0) = (x , i)]

= E [X1 − X0 | (X0, η0) = (x , i)] + E [bη1 − bη0 | (X0, η0) = (x , i)]

= [di + o(1)] +
∑
j∈S

qij(bj − bi),

by applying (Q∞) in the last step. Hence we have the result as
stated. �



Fredholm alternative

The following well-known algebraic result will enable us to
construct the correct Lyapunov function in general for various
cases.

Lemma 14 (Fredholm alternative)

Given an |S| × |S| matrix A and a column vector b, the equation
Aa = b has a solution a if and only if any column vector y for
which A>y = 0 satisfies y>b = 0.



An important observation

Lemma 15

Let di ∈ R and (qij) be an irreducible stochastic matrix with
stationary distribution π. Then the following statements are
equivalent.∑

i∈S diπi = 0.
There exists a solution a = (a1, . . . ,a|S|)> that is unique up
to translation to the system of equations

di +
∑
j∈S

(aj − ai)qij = 0, for all i ∈ S. (2)



Use of Fredholm alternative

A modification of the above argument yields the following
statements, with inequalities instead of equality, which will
enable us to show that, under appropriate conditions involving
πj , suitable bi exist to construct the correct Lyapunov function
satisfying appropriate supermartingale conditions in various
situations.



Use of Fredholm alternative

Lemma 16

Let ui ∈ R for each i ∈ S.
(i) Suppose

∑
i∈S uiπi < 0. Then there exist (bi , i ∈ S) such

that
ui +

∑
j∈S

(bj − bi)qij < 0, for all i ∈ S.

(ii) Suppose
∑

i∈S uiπi > 0. Then there exist (bi , i ∈ S) such
that

ui +
∑
j∈S

(bj − bi)qij > 0, for all i ∈ S.



Use of Fredholm alternative

Proof of lemma

We prove only part (i); the proof of (ii) is similar.

Suppose that
∑

i∈S uiπi = −ε for some ε > 0.

Then taking εi = ε
|S|πi

we get
∑

i∈S(ui + εi)πi = 0.

An application of Lemma 15 with di = ui + εi shows that there
exist bi such that

ui + εi +
∑
j∈S

(bj − bi)qij = 0, for all i ∈ S,

which gives the result since εi > 0. �



Proof of Theorem

Proof of Theorem 12 (‘Positive recurrence side’ only)

We will use the Lyapunov function g(x , i) with suitably chosen
bi . First we see that g(x , i)→∞ as x →∞. Thus Foster’s
criterion shows that the process is positive recurrent if

E [g(Xn+1, ηn+1)− g(Xn, ηn) | (Xn, ηn) = (x , i)] < −ε (3)

for all sufficiently large x . Now suppose
∑

i∈S diπi < 0, then we
use Lemma 16 (i) from our Fredholm alternative corollaries,
with ui = di to show that we may choose bi so that

di +
∑
j∈S

(bj − bi)qij < 0.

Hence from Lemma 13 we know the condition (3) is satisfied for
x sufficiently large. �



Ideas of the complete proof

For the transience part, we can use the Lyapunov function
hν : Σ→ (0,∞), ν > 0, defined by

hν(x , i) :=

{
x−ν − νbix−ν−1 if x ≥ x0,

x−ν0 − νbix−ν−1
0 if x < x0,

where bi ∈ R and x0 := 1 + 2ν maxi∈S |bi |.



Different drifts
What about

∑
i∈S diπi = 0 ?

(i)
∑

i∈S diπi 6= 0, constant drift (DC):

µi(x) = di + o(1).

(ii)
∑

i∈S diπi = 0 and di = 0 for all i , Lamperti drift (DL):

µi(x) =
ci

x
+ o(x−1)

σi(x) = s2
i + o(1)

where σi(x) = E[(Xn+1 − Xn)2 | (Xn, ηn) = (x , i)].
(iii)

∑
i∈S diπi = 0 and di 6= 0 for some i , generalized Lamperti

drift (DG):
µi(x) = di +

ei

x
+ o(x−1)

σi(x) = t2
i + o(1)



Lamperti drift



Lamperti drift

The following theorem is from Georgiou, Wade (2014).

Theorem 17

Suppose that (Bp) holds for some p > 2. Suppose also
that (Q∞) and (DL) hold. Then the following classification
applies.

If
∑

i∈S(2ci − s2
i )πi > 0, then (Xn, ηn) is transient.

If |
∑

i∈S 2ciπi | <
∑

i∈S s2
i πi , then (Xn, ηn) is null recurrent.

If
∑

i∈S(2ci + s2
i )πi < 0, then (Xn, ηn) is positive recurrent.

If, in addition, (Q+
∞)and (D+

L )hold, then the following condition
also applies (yielding an exhaustive classification):

If |
∑

i∈S 2ciπi | =
∑

i∈S s2
i πi , then (Xn, ηn) is null recurrent.



More on Lyapunov function

To prove this, we can look at the Lyapunov function
fν : Σ→ (0,∞) defined for ν ∈ R by

fν(x , i) :=

{
xν + ν

2 bixν−2 if x ≥ x0,

xν0 + ν
2 bixν−2

0 if x < x0,

where bi ∈ R and x0 := 1 +
√
|ν|maxi∈S |bi |.



Generalized Lamperti drift
The following theorem is due to L., Wade (2017).

Theorem 18

Suppose that (Bp) holds for some p > 2. Suppose also
that (QG) and (DG) hold. Define a = (a1, . . . ,a|S|)> to be a
solution to (2) whose existence is guaranteed by Lemma 15.
Define

U :=
∑
i∈S

2ei + 2
∑
j∈S

ajγij

πi ,V :=
∑
i∈S

t2
i + 2

∑
j∈S

ajdij

πi .

Then the following classification applies.
If U > V then (Xn, ηn) is transient.
If |U| < V then (Xn, ηn) is null recurrent.
If U < −V then (Xn, ηn) is positive recurrent.



Example: One-step Correlated random walk

Suppose that a particle performs a random walk on Z+ with a
short-term memory: the distribution of Xn+1 depends not only
on the current position Xn, but also on the ‘direction of travel’
Xn − Xn−1.

Formally, (Xn,Xn − Xn−1) is a Markov chain on Z+ × S with
S = {−1,+1}, with

P[(Xn+1, ηn+1) = (x + j , j) | (Xn, ηn) = (x , i)] = qij(x), for i , j ∈ S.

Then for i ∈ S,

µi(x) = E[Xn+1 − Xn | (Xn, ηn) = (x , i)] = qi,+1(x)− qi,−1(x).

The simplest model has qii(x) = q > 1/2 for x ≥ 1, so the
walker has a tendency to continue in its direction of travel.



Example: One-step Correlated random walk

More generally, suppose that for q ∈ (0,1) and constants
c−1, c+1 ∈ R and δ > 0,

qij(x) =

{
q + ici

2x + O(x−1−δ) if j = i ;
1− q − ici

2x + O(x−1−δ) if j 6= i .
(4)

Here is the recurrence/transience classification for this model.

Theorem 19

Consider the correlated random walk specified by (4). Let
c = (c+1 + c−1)/2. If c < −q, then the walk is positive
recurrent. If c > q, then the walk is transient. If |c| ≤ q, then the
walk is null recurrent.



Example: One-step Correlated random walk
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Voter Model

Consider Markov processes on configurations of particles on Z.
So we take as our state space {0,1}Z. We call s ∈ {0,1}Z a
configuration, and we interpret a coordinate value s(x) = 1 as
the presence of a particle at the site x ∈ Z in the configuration
s, and s(x) = 0 as the absence of a particle at x .

In our voter model, the dynamics are driven by the presence of
discrepancies 01 or 10 in the configuration. In order to obtain
well-defined processes, we consider dynamics on configuration
with finitely many discrepancies.

At each time step the voter model selects uniformly at random
from all discrepancies and then flips the chosen pair to either
00 or 11, with equal chance of each.



Heaviside configuration

Consider the Heaviside configuration defined by 1{x ≤ 0},
which consists of a single pair 10 abutted by infinite strings of
1s and 0s to the left and right, respectively:

. . . 111111000000 . . .

If the voter model starts from the Heaviside configuration, then
at any future time it is a random translate of the same
configuration.

Indeed, the position of the rightmost particle performs a
symmetric simple random walk. If the voter model starts from a
perturbation of the Heaviside configuration, it is natural to study
the time it takes to reach a translate of the Heaviside
configuration. This example motivates the following notation.



Some notation

Let S ′ ⊂ {0,1}Z denote the set of configurations with a finite
number of 0s to the left of the origin and 1s to the right, i.e.,
s′ ∈ {0,1}Z for which there exist l , r ∈ Z with l < r such that
s′(x) = 1 for all x ≤ l and s′(x) = 0 for all x ≥ r .

In other words, S ′ contains those configurations of {0,1}Z in
which there is only a finite number of discrepancies, and the
number of discrepancies of type 10 minus the number of
discrepancies of type 01 is equal to 1. Note that S ′ is countable.

Let ‘∼’ denote the equivalence relation on S ′ such that for
s′1, s

′
2 ∈ S ′, s′1 ∼ s′2 if and only if s′1 and s′2 are translates of

each other, i.e., there exists y ∈ Z such that s′1(x) = s′2(x + y)
for all x ∈ Z.



Some notation

Now we set S := S ′/ ∼. In other words, S is the set of
configurations of the form infinite string of 1s – finite number of
0s and 1s – infinite string of 0s modulo translations.
For example, one s ∈ S is

s = . . . 11111010111111000000001101000001000111110000 . . .

Denote sH ∈ S to be the equivalence class of the Heaviside
configuration 1{x ≤ 0}.



Voter Model

The voter model (ξn,n ≥ 0) is a time-homogeneous Markov
chain on the countable state-space S.

The one-step transition probabilities are determined by the
following mechanism.

At each time step we first choose a discrepancy (i.e. 10 or
01) uniformly at random from the finite number of available
discrepancies.

The chosen pair (10 or 01) will then flips to 00 or 11 each
with probability 1

2 .



Some notation

For s ∈ S, let N = N(s) ≥ 0 denote the number of 1-blocks not
including the infinite 1-block to the left (this is the same as
number of 0-blocks not including the infinite 0-block to the right).

Enumerating from left to right, let ni = ni(s) denote the size of
the i-th 0-block, and mi = mi(s) the size of the i-th 1-block.

We can represent configuration s ∈ S\{sH} by the vector of
block sizes (n1,m1, . . . ,nN ,mN). For example a configuration

s = . . . 11111010111111000000001101000001000111110000 . . .

has N(s) = 6 and the representation (1,1,1,6,8,2,1,1,5,1,3,5).



Lyapunov Functions

For s ∈ S\{sH} and i ∈ {1,2, . . . ,N} let

Ri := Ri(s) :=
i∑

j=1

nj , and Ti := Ti(s) :=
i∑

j=1

mj

with the convention that R0 = Tn+1 = 0.
Define the Lyapunov function f : S → R+ as f (sH) = 0 and for
s ∈ S\{sH},

f (s) :=
1
2

(
N∑

i=1

miR2
i +

N∑
i=1

niT 2
i

)
.

One can check that in fact f is a martingale, i.e.

E [f (ξn+1)− f (ξn) | ξn = s] = 0.



Recurrence classification

Theorem 20
The voter model is positive recurrent.

This theorem is first proved by Liggett (1976), and the proof that
we present here is from Belitsky et al. (2001).



Recurrence classification
Proof

To apply Foster’s criterion here, we try to use the function
(f (ξn))α for some α < 1. From elementary calculus gives us
that for α ∈ (0,1) there exists a positive constant c1 such that,
for all |x | ≤ 1,

(1 + x)α − 1 ≤ αx − c1x2.

Using this we evaluate

E [(f (ξn+1))α − (f (ξn))α | ξn = s]

= (f (s))αE
[(

1 +
f (ξn+1)− f (ξn)

f (ξn)

)α
− 1

∣∣∣∣ ξn = s
]

≤ −c1(f (s))α−2E
[
(f (ξn+1)− f (ξn))2

∣∣∣ ξn = s
]

where last step we used the fact that f is a martingale.



Recurrence classification

Define s−r
0 be the configuration obtained from s by removing

the rightmost 1 for the infinite 1-block and s+r
N be the

configuration obtained from s by adding an extra 1 to the right
of the Nth 1-block.

We observed that

|f (s−r
0 )− f (s)| ≥

T 2
1

2
, and |f (s+r

N )− f (s)| ≥
R2

1
2
.



Recurrence classification
It follows from these two inequalities that

E
[
(f (ξn+1)− f (ξn))2

∣∣∣ ξn = s
]

≥ 1
4N + 2

(
f (s−r

0 )− f (s)
)2

+
1

4N + 2
(
f (s+r

N )− f (s)
)2

≥
T 2

1 + R2
N

8N + 4
≥ c2|s|4

N
for all s ∈ S, where c2 > 0 is a constant.

A very important observation here is that the voter model does
not increase the number of blocks N(ξn). So we have

E
[
(f (ξn+1)− f (ξn))2

∣∣∣ ξn = s
]
≥ c0|s|4, for all s ∈ S,

with c0 = c2(ξ0) = c2
N(ξ0) .



Recurrence classification
Putting back we obtain

E [(f (ξn+1))α − (f (ξn))α | ξn = s] ≤ −c0c1(f (s))α−2|s|4.

With some work we can also get an upper bound that
f (s) ≤ 1

8 |s|
3, hence

E [(f (ξn+1))α − (f (ξn))α | ξn = s] ≤ −8
4
3 c0c1(f (s))α−

2
3 .

Take α = 2
3 to apply the Foster’s criterion to complete the

proof. �

Remark: By an extension of the Foster argument, using the full
range α < 1, one can show that for any ε > 0,

E
[
τ

3
2−ε

∣∣∣ ξ0 = s
]
<∞.



Exclusion process

Define p ∈ [0,1] to be the exclusion parameter. The exclusion
process (ξn,n ≥ 0) with the parameter p, denoted as EP(p) is a
time-homogeneous Markov chain on the state space S.

At each time step the exclusion process selects uniformly at
random from all discrepancies and a chosen pair 01 flips to 10
with probability p (otherwise no move) and a chosen pair 10
flips to 01 with probability q := 1− p (otherwise no move).

Theorem 21
If p > 1

2 , then EP(p) is positive recurrent. If p ≤ 1
2 , then EP(p)

is transient.

The positive recurrent side is essentially due to Liggett (1976).
The transient side is due to Belitsky et al. (2001).



Exclusion process
Proof (”Positive recurrent” side only)

We will use the same Lyapunov function f as stated before in
the voter model.

Let |s| be the length of the string of 0s, and 1s between the
infinite string of 1s to the left and the infinite string of 0s to the
right.

Since RN + T1 = |s|, Ri ≥ i and Ti ≥ N − i + 1, we can see that
N∑

i=1

(Ri + Ti) ≥ max{|s|,N(N + 1)}.

With a calculation, we get

E[f (ξn+1)− f (ξn)|ξn = s] ≤ N + 1
2N + 1

− (2p − 1)
max{|s|,N(N + 1)}

2N + 1
.



Exclusion process

Suppose p > 1
2 . If (2p − 1)|s| > 2N + 2, we have

E[f (ξn+1)− f (ξn)|ξn = s] ≤ − N + 1
2N + 1

≤ −1
2
.

and for (2p − 1)N > 3, we have

E[f (ξn+1)− f (ξn)|ξn = s] ≤ 1− 3(N + 1)

2N + 1
≤ −1

2
.

The set of s for which both (2p − 1)N ≤ 3 and
(2p − 1)|s| ≤ 2N + 2 is finite, so we have shown that

E[f (ξn+1)− f (ξn)|ξn = s] ≤ −1
2
.

for all but finitely many s ∈ S, and hence by Foster criterion, we
proved that EP(p) is positive recurrent when p > 1/2.



Hybrid process

Define β ∈ [0,1] to be the mixing parameter.

The exclusion-voter process (or Hybrid process) (ξn,n ≥ 0)
with parameters (β,p), denoted as HP(β,p) is a
time-homogeneous Markov chain on the state space S.

At each time step we decide independently at random whether
to perform a voter move or an exclusion move. We choose a
voter move with probability β and an exclusion move with
probability 1− β. Then we execute the chosen move
accordingly.

When β = 0, we recover the exclusion process with parameter
p.

When β = 1, we recover the voter model.



Hybrid process

The following theorems are due to Belitsky et al. (2001).

Theorem 22
If β,p are such that (1− p)(1− β) < 1

3 , then HP(β,p) is
positive recurrent.

Theorem 23
For any β > 0 and p ≥ 1

2 the process HP(β,p) is positive
recurrent.



Strength and weakness of the semimartingale methods

Although the methods are very robust and constructive, they
are tricky to start with the right Lyapunov functions without any
experience.

Without explicit calculation of the expectation, it is hard to tell if
the function that we picked is indeed the right one.

The Lyapunov function for a specific model is usually not
unique and it can be in various forms.

To pick a good Lyapunov function that enables simpler
calculation among all those which will satisfy the conditions in
the theorems is a skill derived from experience.



Strength and weakness of the semimartingale methods

A quote from an expert in the semimartingale methods:

‘If one cannot use a certain method (other than the
semimartingale method) to deduce a recurrence

classification, then one can try to use the semimartingale
method to deduce the classification.

If one can use a certain method (other than the
semimartingale method) to deduce a recurrence

classification, then one can surely use the semimartingale
method to deduce the same classification.’
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