The Euclidean Steiner Tree Problem

Germander Soothill

16. Februar 2010

Introduction

\author{

1. Definition
}
2. Fermat Problem
3. Properties of Steiner Minimal Tree
4. Steiner Topologies
5. Exact Algorithms / Heuristics
6. The Steiner Ratio
7. Soap Film Model

Definition

- What is the Euclidean Steiner Tree Problem?

Input: n terminals in the plane.
Output: Minimum spanning tree using all n as well as extra Steiner points from the plane.

- Extension of the Euclidean Minimum Spanning Tree Problem
- Solution: Steiner Minimal Tree

Fermat Problem

- The $n=3$ case (Fermat, 1601-1665).
"Find in the plane a point whose total distance from three given points is minimal".
- Solution:

1. If all angles are less than 120° : Point which makes 120° with each pair of the 3 given points.
2. If an angle is greater than $\mathbf{1 2 0}^{\boldsymbol{\circ}}$: Vertex of the angle greater than 120°.

Properties of Steiner Minimal Tree

- No two edges meet at an angle less than 120°. (angle condition)
- Each Steiner point has degree 3.
- No crossing edges.
- At most $n-2$ Steiner points.

4

Steiner Topologies

- Steiner topologies show the connections between terminals and Steiner points.
- Full Steiner topology has $n-2$ Steiner points.
- Number of full Steiner topologies increases rapidly with n : $f(n)=(2 n-4)!/\left[2^{n-2}(n-2)!\right]$

n	2	3	4	5	6	7
$f(n)$	1	1	3	15	105	945
$F(n)$	1	4	31	360	5625	110800

Exact Algorithms / Heuristics

- Computational problem - algorithmic, solved by a computer.
- Time complexity, $T_{A}(N)$.
- Best exact algorithm GeoSteiner solves up to $n=2000$ in a day.
- Heuristics use the minimum spanning tree. Prim's Algorithm has $T_{A}(N)=O(n \log n)$

The Steiner Ratio

- For all $n:|S M T(n)| \leq|M S T(n)|$

- Steiner ratio (largest ratio) is $\sqrt{ } 3 / 2$.
- Lengths never differ by more than 15.5%

Soap Film Model

- 3 physical devices: String model, Soap film model, Membrane model.
- Posts located at terminals.
- State of minimum energy of soap film forms Steiner minimal tree.

Conclusion

- Euclidean Steiner Tree Problem: find the mininum tree connecting n terminals with the addition of auxillary points.
- The Fermat problem is the $n=3$ case.
- Steiner minimal trees have Steiner points which make 3 angles of 120°
- Problem is exponential due to number of possible topologies increasing raplidly with n.
- No exact polytime algorithm is known to solve the problem.
- Heuristic algorithms using the minimum spanning tree are used.
- The minimum spanning tree for set n is never more than 15.5\% longer than the Steiner minimal tree.
- Soap films are a physical model used to study the problem.

The end

