The Statistics of Cycling

Matthew Arnold
Grey College
$3^{\text {rd }}$ March 2010

The Statistics of Cycling

Contents

- Data
- Usage Profiles
- Clustering
- Results
- Linking to explanatory variables
- Problems

The Statistics of Cycling

Data

- From Sustrans, a charity that promotes sustainable transport in the UK
- Responsible for planning and delivering the National Cycle Network
- Counters count bikes!

The Statistics of Cycling

Counters

The Statistics of Cycling

Usage profiles

- What proportion of daily count per hour?

The Statistics of Cycling

Usage profiles

The Statistics of Cycling

Usage profiles

- What proportion of daily count per hour?
-What proportion of year count per month?

The Statistics of Cycling

Usage profiles

The Statistics of Cycling

Usage profiles

- What proportion of daily count per hour?
-What proportion of year count per month?
-What shape do these profiles take?

The Statistics of Cycling

Clustering

- Try to find common shapes.
- How do we assess dissimilarity?
- Euclidean
$d(x, y)=\left(\sum_{i=1}^{n}\left(x_{i}-y_{i}\right)^{2}\right)^{1 / 2}$

Manhattan
$d(x, y)=\sum_{i=1}^{n}\left|x_{i}-y_{i}\right|$

Minkowski

$$
d(x, y)=\left(\sum_{i=1}^{n}\left(x_{i}-y_{i}\right)^{p}\right)^{1 / p}
$$

- K-means clustering on daily profiles.

The Statistics of Cycling

Result

The Statistics of Cycling

Result!

- 4 shapes!

The Statistics of Cycling

Result!

- 4 shapes!
- Schools

The Statistics of Cycling

Result!

- 4 shapes!
- Schools
- Commuter

The Statistics of Cycling

Result!

- 4 shapes!
- Schools
- Commuter
- Leisure

The Statistics of Cycling

Result!

- 4 shapes!
- Schools
- Commuter
- Leisure
- Hybrid (shopping?)

The Statistics of Cycling

Relate to explanatory variables

- Responses to Sustrans counter location information
- Try to fit a multinomial logit model (MLM) to "predict" classification.
- A multivariate generalised linear model

$$
\begin{aligned}
& \boldsymbol{\mu}_{i}=E\left[\mathbf{Y}_{i}\right]=\left(\pi_{1}\left(\mathbf{x}_{i}\right), \ldots, \pi_{J-1}\left(\mathbf{x}_{i}\right)\right) \\
& \mathbf{g}\left(\boldsymbol{\mu}_{i}\right)=\alpha_{i}+\mathbf{X}_{i} \boldsymbol{\beta} \\
& g_{j}\left(\boldsymbol{\mu}_{i}\right)=\log \frac{\mu_{i j}}{1-\left(\mu_{i 1}+\ldots+\mu_{i, J-1}\right)}
\end{aligned}
$$

The Statistics of Cycling

Relate to explanatory variables

- Specifically baseline category logit models
- Choose one category as a baseline - Modal category, or just the first/last one
- We compare other categories to the baseline
- Fit $\boldsymbol{\beta}$ using maximum likelihood estimation

The Statistics of Cycling

Relate to explanatory variables

- Response probabilities

$$
\begin{gathered}
\pi_{j}(\mathbf{x})=\frac{\exp \left(\alpha_{j}+\boldsymbol{\beta}_{j}^{T} \mathbf{x}\right)}{1+\sum_{k=1}^{J-1} \exp \left(\alpha_{k}+\boldsymbol{\beta}_{k}^{T} \mathbf{x}\right)} \\
\alpha_{J}=0 \\
\boldsymbol{\beta}_{J}=0
\end{gathered}
$$

The Statistics of Cycling

Relate to explanatory variables

- Fit the following model
classification ~ Trafficfreeroute + region
- Table of observed responses

| region | midlands | north | south | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Trafficfreeroute | 0 | 1 | 0 | 1 | 0 | 1 |
| classification | | | | | | |
| commuter | 1 | 0 | 0 | 8 | 13 | 5 |
| hybrid | 12 | 12 | 2 | 14 | 2 | 1 |
| leisure | 0 | 7 | 2 | 16 | 1 | 6 |
| schools | 1 | 0 | 0 | 2 | 0 | 2 |

The Statistics of Cycling

Relate to explanatory variables

- Response probabilities, say we wanted to know how we might classify a counter in the North that is traffic free.

commuter hybrid leisure schools 0.166223100 .347724900 .438389720 .04766228

The Statistics of Cycling

Problems

- If there is a zero in the table of observed responses, then parameter estimation sometimes breaks down.
- Limited data
- Schools result is not explained by any of the explanatory variables

The Statistics of Cycling

Questions?

If you worried about falling off the bike, you'd never get on.
Lance Armstrong

The Statistics of Cycling

Example of parameter estimation failing

- Route adjacent to road table

	commuter	hybrid	leisure	schools
0	17	28	32	4
1	10	15	0	1

- Traffic free route table

	commuter	hybrid	leisure	schools
0	14	16	3	1
1	13	27	29	4

The Statistics of Cycling

Example of parameter estimation failing

multinom(formula = classification ~ route, data $=$ newClassRoute)

Coefficients:

	(Intercept)	route
hybrid	0.4989866	-0.09345878
leisure	0.6324810	-10.71041396
schools	-1.4469457	-0.85564786

Std. Errors:

$$
\begin{array}{lrr}
& \text { (Intercept) } & \text { route } \\
\text { hybrid } & 0.3074673 & 0.5110844 \\
\text { leisure } & 0.3001218 & 48.8004645 \\
\text { schools } & 0.5557196 & 1.1869667
\end{array}
$$

multinom(formula = classification ~
Trafficfreeroute, data $=$ newClassAll)

Coefficients:
(Intercept) Trafficfreeroute
hybrid 0.1335310 0.5973803
leisure -1.5404378 2.3427939
schools -2.6390253 1.4603639

Std. Errors:
(Intercept) Trafficfreeroute
hybrid 0.3659628
0.4978849
leisure
0.6362076
0.7184476
schools
1.0350836
1.1825086

