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Data

• From Sustrans, a charity that promotes 

sustainable transport in the UK

• Responsible for planning and delivering 

the National Cycle Network

• Counters count bikes!
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Usage profiles

• What proportion of daily count per hour?

• What proportion of year count per month?

• What shape do these profiles take?
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Clustering

• Try to find common shapes.

• How do we assess dissimilarity?

– Euclidean Manhattan Minkowski

• K-means clustering on daily profiles.
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Result!

• 4 shapes!

• Schools

• Commuter

• Leisure

• Hybrid (shopping?)
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Relate to explanatory variables

• Responses to Sustrans counter location 

information 

• Try to fit a multinomial logit model (MLM) 

to “predict” classification.

– A multivariate generalised linear model
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Relate to explanatory variables

• Specifically baseline category logit models

• Choose one category as a baseline

– Modal category, or just the first/last one

• We compare other categories to the 

baseline

• Fit β using maximum likelihood estimation
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Relate to explanatory variables

• Response probabilities
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Relate to explanatory variables

• Fit the following model 

• Table of observed responses

classification ~ Trafficfreeroute + region

region          midlands   north    south   

Trafficfreeroute 0  1     0  1     0  1

classification                                               

commuter          1  0     0  8     13 5

hybrid            12 12    2  14    2  1

leisure           0  7     2  16    1  6

schools           1  0     0  2     0  2
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Relate to explanatory variables

• Response probabilities, say we wanted to 

know how we might classify a counter in 

the North that is traffic free.

commuter     hybrid    leisure    schools 

0.16622310 0.34772490 0.43838972 0.04766228



The Statistics of Cycling

Problems

• If there is a zero in the table of observed 
responses, then parameter estimation 
sometimes breaks down.

• Limited data

• Schools result is not explained by any of 
the explanatory variables
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Questions?

If you worried about falling off the bike, 

you’d never get on.

Lance Armstrong
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Example of parameter estimation failing

• Route adjacent to road table

• Traffic free route table

commuter hybrid leisure schools

0       14     16       3       1

1       13     27      29       4

commuter hybrid leisure schools

0       17     28      32       4

1       10     15       0       1
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Example of parameter estimation failing

multinom(formula = classification ~ 

route, data = newClassRoute)

Coefficients:

(Intercept)        route

hybrid    0.4989866  -0.09345878

leisure   0.6324810 -10.71041396

schools  -1.4469457  -0.85564786

Std. Errors:

(Intercept)      route

hybrid    0.3074673  0.5110844

leisure   0.3001218 48.8004645

schools   0.5557196  1.1869667

multinom(formula = classification ~ 

Trafficfreeroute, data = newClassAll)

Coefficients:

(Intercept) Trafficfreeroute

hybrid    0.1335310        0.5973803

leisure  -1.5404378        2.3427939

schools  -2.6390253        1.4603639

Std. Errors:

(Intercept) Trafficfreeroute

hybrid    0.3659628        0.4978849

leisure   0.6362076        0.7184476

schools   1.0350836        1.1825086


