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Abstract

SOME of the largest gaps in the operator formalism of quantum
mechanics are labeled, slightly misleadingly, under the title of

’the measurement problem’. These problems can be better under-
stood as regarding the quantum-to-classical transition. By introduc-
ing the phenomena of entanglement, as well as tools such as den-
sity matrices, it is possible to demonstrate, through the mechanism
of ’decoherence’, the emergence of classical physics from the un-
derlying quantum laws. By considering a simple case such as the
spin-boson model we can illustrate the influence and effects of the
environment as compared to a system in isolation.

1. Entanglement

ENTANGLEMENT is a phenomenon whereby two particles interact
in such a way that measurement of one allows the observer to

immediately deduce information about the other. For example a pion
decays into a positron and electron with opposite spins meaning
measurement of either particle allows us to deduce the spin of both
along the axis of measurement. Since an observer can measure
in different directions, and such a choice affects the measurement
statistics of the unobserved particle, Einstein called this ”spukhafte
fernwirrkung” [spooky action at a distance]. In 1964 John Stewart
Bell [1] demonstrated that quantum mechanics would give experi-
mentally distinct results to a case where ’local hidden-variables’ had
always encoded the result of a measurement.
We denote two entangled systems with |ai〉εHA and |bj〉εHB as

|ψ〉 =
∑
i,j

ci,j|ai〉 ⊗ |bi〉

where |ψ〉 is entangled iff it cannot be written as the tensor prod-
uct of two separate states i.e. |ψ〉 = |ψA〉 ⊗ |ψB〉 with |ψA〉εHA and
|ψB〉εHB. If it were possible to separate the state in this way then
the states would have retained their independence.
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2. Decoherence

BEGINNING with a superposition |ψ〉 =
∑2

i ci|ψi〉 constituting or-
thonormal states |ψi〉, and consider an interaction, known as

the von-Neumann ideal measurement scheme, whereby this state
becomes entangled with the environment,

2∑
i

ci|ψi〉 ⊗ |E〉 −→
2∑
i

ci|ψi〉 ⊗ |Ei〉

where we have here established entanglement between our system
and the environment. The superposition initially present only on
the level of the system is now present on the level of the system-
environment composite. If we now define a density matrix as
ρ = |ψ〉〈ψ| and trace over the environmental states to obtain the
so-called ’reduced-density matrix’, ρs we obtain

|c1|2|ψ1〉〈ψ1|+ |c2|2|ψ2〉〈ψ2|+ c1c̄2|ψ1〉〈ψ2|〈E1|E2〉+ c2c̄1|ψ2〉〈ψ1|〈E2|E1〉

where all the interference terms of our superposition are now encap-
sulated in the overlap 〈E1|E2〉. It is the suppression of the overlap we
instinctively expect due to the interaction with different states caus-
ing distinct environmental states that we call decoherence. As the
overlap is suppressed we are left with only the diagonal elements
of the reduced density matrix which represents an ensemble with
probability ≈ |c1|2 of being in state |ψ1〉 etc.
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Figure 1: A Double-Well Potential which, in the spin boson model,
is truncated to two-states and interacts with an environment of har-
monic oscillators.

3. Spin-Boson Model

THE Spin-Boson model constitutes a central system restricted to
two states (see Fig.1), interacting with an environment of har-

monic oscillators. It is possible in the limit ∆
ωc
→ 0, where ∆ is the

tunneling amplitude and ωc is the high-frequency cutoff, to obtain
exact expressions for variables of interest, in terms of the spectral
density function J(ω). We define P (t) for t > 0 to be the expectation
value (where +1 represents the right well in Fig.1) given certain ini-
tial conditions. Following the method of [2] using the Non-Interacting
Blip Approximation in the case of a symmetric potential (ε = 0), and
ohmic dissipation (J(ω) ∼ ω for ω . ωc) to obtain the results

P (t) =
1

2π~

∫
C

eλt [λ + f (λ)]−1 dλ

f (λ) ≡ ∆eff

(
2γ

∆eff

)2α−1
Γ(α + λ/2γ)

Γ(1− α + λ/2γ)

γ ≡ πkT

~
∆eff ≡ ∆

(
∆

ωc

) α
1−α

α ≡ ηq2
0

2π~

where C is the standard Bromwich contour. Comparing this to an
isolated system we see that the decoherence induced by interaction
with the environment gives qualitatively different results.

4. Applications and Relevance of Decoherence

THE intense interest in decoherence results primarily from its role
in quantum computing. The qubits need to be shielded from the

environment to prevent decoherence from corrupting them and re-
ducing them to classical bits. However, there is also the need to be
able to manipulate your qubits to do computations, which prevents
you from completely shielding them from outside influence. The
establishing of entanglement between the qubits and apparatus re-
quired to manipulate the data necessitates quantum error correction
codes, which are based on entanglement and which along with de-
coherence free subspaces are used to combat errors. Qubits are
a two-state system interacting with an environment which (provided
the interaction is weak enough) can be modeled as harmonic oscil-
lators, meaning it can be equated with the spin-boson model.


