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Entanglement

e Example: pion decays into a positron and electron with opposite spins.

pion
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e Bell State
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can't be decomposed.

e Measurement in one basis effects the state in the other, " spukhafte fernwirrkung' .



Bell's Theorem and Inequality

e Imagine predetermined by some ’'local hidden variables’

Population of state Particle 1 Particle 2
N1 (EL+,Q+,E+) (a—a§—76—)
N2 (a+’9+76—) (a_,lz_,5+)
N3 (a—lﬂé—:é—i-) (a’_’é'i‘?a_)
Na (@4,b-,e-) | (a-,b4,c4)
Ns (a—aé-l-:a-l-) (a’+a§—76—)
Ne (a—79+76—) (a+a9—76+)
N7 (a—aé—76+) (a+7§+76—)
Ng (@—,b_,c-) | (@4,b4,24)

e Bell's Inequality

P(a4;by) < P(ay;eq) + P(E4:04)
N3+ Na < (N2 + Ns) + (N3 + N7)

e In Quantum Picture where 6, measures angle between directions @ and b

= 1 0,
P(EL+; b+) = ES’i’nQ (?Z))

e Inequality translates to

I8 .~ Local Hidden Variable
() Quantum Mechanics
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Decoherence

e Mathematical mechanism for creating entangled states e.g. measurement apparatus
Vi) |[Er) — |i) | E)

e Now consider superposition

> cilv)|Er) — Z cilvi) | Ei)
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e Superposition originally present at only the level of the system has been amplified
to the level of the system-environment composite.

e EXpressing our entangled state as a density matrix gives

OSE = Zcij|¢z‘><¢j| ® | E;) (Ej]

1,
e Trace over environment to obtain the reduced density matrix os = > _, . ci;|i) (¥; |(Ej| Ei)

e Suppression of overlap (E;|E;) for ¢ # j is decoherence as diagonal density matrix
emerges



Canonical Models

System Environment
Harmonic Oscillator Harmonic Oscillators
Spin-3 particle Spin-3 particles

e Feynman and Vernon 1963, can map any environment to harmonic
oscillators provided " sufficiently weak interaction™.

e Consider Spin-Boson model consisting of a Spin—% particle linearly

coupled to an environment of harmonic oscillators



Spin-Boson Model

The asymmetric double well-potential truncated to a two-state system

Quantum Computing

P(t) is expectation value for t > 0 for system to be in one well or other.

e Can solve exactly but equations are very unwieldy and prohibitively complicated!
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Exact Solution
P(t) _Z( D"A2K, (1)

K, (t) =2~ Z/ dth/ dton—1.. / dtan({tm} J {CZ} 76)

{G}
Fn({tm} ) {Cl} ) ‘S = F {tm} F> {tm> CZ} F3 {thi} Fy {tmciff}

Fi = exp [——Zs] P = exp [——Z > cjck/\]k]

k=1 j=k+1

n—1 n 5
€ q
cos [ g anXjk] F4 = cos [ g ¢ [(tgj — tQj_l)i_’z — W—%on]
j=1

=1 j=k+1

o

S; = Q2(t2; — t2j-1)
Nik = Q2(t2j—1 — tor) + Q2(t2; — tog—1) — Q2(t2; — tor) — Q2(t2j—1 — tog—1)
Xip = Q1(t2; — tory1) — Q1(t2; — tor) — Q1(t2j—1 — tort1) + Q1 (t2—1 — tor)

Q1(t) = / Jf;))sin(wt)dw
0

Qa(t) = /O Ji‘”) (52“) i




Ohmic Dissipation for Unbiased Case

e Applying an approximation known as the Non-Interacting Blip Approximation sim-
plifies equations enormously allowing for evaluation of P(t)

e Following the method of Leggett et al. 1987, justify in extreme regions of (e,
T )-phase space

e Ohmic Dissipation, spectral density function J(w) ~ w for w < w. so we take J(w) =
we e

P(t) = i/ A+ FO)]HdA
. 27'("1, C
e Obtain result

o0 cos [QOztcm_l (wct)} [ 2t ] 2a o

. At
f(A) = AQ/O € (1 + (wet)?)e 2sinh(~t)

e Qualitatively different to the case of isolation which simply oscillates.



Possible further work

e Solve for non-ohmic spectral densitites

e Kondo model, i.e. Bosons — Fermions

e Solve Quantum Brownian Motion Model



Summary

e [ hrough entanglement superpositions become elevated from system
to system-environment composite

e As environmental states become distinct coherent superpositions are
suppressed and classical case emerges

e Can solve the dynamics of the spin-boson model exactly to compare
the effect of the environment.
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Any Questions

Thankyou for listening
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