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Knots and their Diagrams

A knot is a closed curve in R3 that does not intersect itself any-
where - like a piece of knotted string, but with the two ends
fused together. We may study knots by looking at their projec-
tions onto the plane - such a projection is called a knot diagram.

The Reidemeister
moves.

The Theorem of Reidemeister states
that two diagrams represent the same
knot if and only if one diagram can be
changed into the other by a combina-
tion of basic topological deformations
in the plane, and a finite sequence of
Reidemeister moves, shown here (where
the diagrams represent local changes
to a larger knot diagram).

The unknot (left) and three diagrams of the same trefoil knot.

The Bracket Polynomial
In general it is very difficult to find a sequence of Reidemeis-
ter moves. Instead, we try to find knot invariants, such as the
bracket polynomial.
The bracket polynomail is only an invariant of regular isotopy
(ignoring the R1 move), but it is very easy to normalise the
bracket to obtain an ambient isotopy invariant. After a change
of variable this becomes the Jones Polynomial; first discovered
through work on operator algebras and statistical models.

Axioms for the Bracket
Polynomial.

The bracket polynomial of a
knot K, denoted 〈K〉, is a Laur-
net polynomial in a single vari-
able A, defined by these three
axioms.
Where 〈0 K〉 denotes the bracket
polynomial of the disjoint union
of some knot K and an unknot
with no crossings 0.

Abstract Tensor Diagrams
We can interpret knot diagrams as diagrammatic representa-
tions of matrix multiplication:

By assigning our diagrams a ‘time’
direction (here going up the page),
we may associate matrices to the
maxima, minima, and to each of
the two types of crossing, as shown.
Connected strands thus represent
summation over the index corre-
sponding to that line.
This way, any knot diagram is
mapped to a specific contracted ten-
sor t(K).

Example: A trefoil knot

t(K) = Mab Mcdδa
e δd

h Rbc
f gR̄e f

ij R̄gh
kl Mil Mjk

(Using the Einstein summation convention.)

Topological Invariance
By demanding that this particular tensor contraction t(K) is
invariant under regular isotopy, we obtain a number of con-
straints for the given matrices M and R, the most interesting of
which is given by the third Reidemeister move:

The third Reidemeister
move.

Invariance under this move means
that the R matrix must satisfy:

Rab
ij Rjc

k f Rik
de = Rbc

ki Rak
dj Rji

e f

This is in fact the Yang-Baxter
Equation, which first appeared in
the field of statistical mechanics.

Back to the Bracket
If we assume: Mab = Mab, then by taking:

M =
√
−1ε̃, where ε̃ =

[
0 A

−A−1 0

]
,

Rab
cd = AMab Mcd + A−1δa

c δb
d and R̄ab

cd = A−1 Mab Mcd + Aδa
c δb

d
(All indices run from 1 to 2). It is easy to verify that this satis-
fies the axioms for the bracket polynomial.
In the special case of the bracket with A = 1, we have:

M =
√
−1ε, where ε =

[
0 1
−1 0

]
.

ε has the property that for any matrix P with commuting en-
tries; PεPT = DET(P)ε. Therefore ε is the defining invariant
for the group SL(2) - the set of matrices with determinant 1.

The Quantum Group SL(2)q

We now ask what structure leaves the deformed epsilon ε̃ in-
variant? That is, what sort of matrices will satisfy
(∗) Pε̃PT = ε̃ and PT ε̃P = ε̃ ?

Suppose P =

[
a b
c d

]
, where a, b, c, d are elements of an

associative but non-commutative ring. If we set q =
√

A,
then the equations (∗) are equivalent to the set of equations:

ba = qab, db = qbd, dc = qcd
ca = qac, bc = cb, ad− da = (q−1 − q)bc
ad− q−1bc = 1

Note that when q = 1 these equations once again define SL(2).
If we now define a coproduct ∆, co-unit ε, and antipode γ:

∆(P) =

[
a⊗ a + b⊗ c a⊗ b + b⊗ d
c⊗ a + d⊗ c c⊗ b + d⊗ d

]
, ε(Pi

j ) = δi
j ,

γ(P) =

[
d −qb

−q−1c a

]
, then this defines a Hopf Algebra.

In fact, this gives a generalisation of SL(2) to a quasi-triangular
Hopf algebra, also known as the Quantum Group, SL(2)q.

From this there are a number of possible avenues to in-
vestigate: How is it that this satisfies the identities required
to be quasi-triangular? How and why is SL(2)q related to a
deformation of the Lie Algebra of SL(2)?
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