Knot Theory and Quantum Groups

Dominic Goulding

March 3, 2010

Introduction

1. What is a Knot?
2. Abstract Tensor Diagrams
3. Topological Invariance - Applying Knot Theory
4. The Quantum Group $S L(2)_{q}$

1. What is a Knot?

- A closed curve in \mathbb{R}^{3}, with no self-intersections.
- Like a piece of string, but with the ends fused together.
- We can just look at their projections onto the plane - knot diagrams

2. Abstract Tensor Diagrams

A way to interpret knot diagrams:

- Assign a 'time' direction.
- Associate matrices (tensors).
- Connected strands denote summation over the specified index.

Now, any knot diagram is mapped to a specific contracted tensor $\mathrm{t}(\mathrm{K})$.

Example - the Trefoil Knot

$$
\begin{aligned}
& \dot{\sim} \rightarrow M^{a b}
\end{aligned}
$$

$$
\begin{aligned}
& t(K)=M_{a b} M_{c d} \delta_{e}^{a} \delta_{h}^{d} R_{f g}^{b c} \bar{R}_{i j}^{e f} \bar{R}_{k l}^{g h} M^{j k} M^{i l}
\end{aligned}
$$

3. Topological Invariance

We obtain a number of constraints for our matrices.
The most interesting is:

$$
R_{i j}^{a b} R_{k f}^{j c} R_{d e}^{i k}=R_{k i}^{b c} R_{d j}^{a k} R_{e f}^{j i}
$$

This is the Yang-Baxter Equation

- first appeared in the field of statistical mechanics.

The third Reidemeister move.

The Bracket Polynomial

So take: $\quad R_{c d}^{a b}=A \delta_{c}^{a} \delta_{d}^{b}+A^{-1} M^{a b} M_{c d}$

$$
\begin{gathered}
M_{a b} M^{a b}=-A^{2}-A^{-2} \\
M_{a k} M^{k b}=\delta_{a}^{b}
\end{gathered}
$$

A Solution

$$
M=\left[\begin{array}{cc}
0 & \sqrt{-1} A \\
-\sqrt{-1} A^{-1} & 0
\end{array}\right]
$$

So $M=\sqrt{-1} \tilde{\epsilon}$, with $\tilde{\epsilon}=\left[\begin{array}{cc}0 & A \\ -A^{-1} & 0\end{array}\right]$.
Special case: $A=1$
$\tilde{\epsilon}=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]=\epsilon$
This is the defining invariant for $S L(2)$ - ie. If P is an element of $S L(2)$, then $P \epsilon P^{T}=\epsilon$.

Can we find a genealisation of $S L(2)$ that leaves $\tilde{\epsilon}$ invariant?
4. The Quantum Group $S L(2)_{q}$

What matrices will satisfy $P \tilde{\epsilon} P^{T}=\tilde{\epsilon}$ and $P^{T} \tilde{\epsilon} P=\tilde{\epsilon}$? With:

$$
\begin{gathered}
\tilde{\epsilon}=\left[\begin{array}{cc}
0 & A \\
-A^{-1} & 0
\end{array}\right] \\
\text { If } P=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \text { and let } q=\sqrt{A} \text { then we end up with: } \\
\begin{array}{ll}
b a=q a b, & d b=q b d \\
d c=q c d, & c a=q a c \\
b c=c b, & a d-d a=\left(q^{-1}-q\right) b c \\
&
\end{array} .
\end{gathered}
$$

a, b, c, d are elements of an associative, non-commutative algebra.
This (with a few extra things) defines a quasi-triangular Hopf Algebra, also known as the Quantum Group $S L(2)_{q}$.

What is a Hopf Algebra?

A Hopf Algebra is a bialgebra with an antipode.
(Let A be our algebra $S L(2)_{q}$), then define:

- Coproduct $\Delta: A \rightarrow A \otimes A$

$$
\Delta(P)=\left[\begin{array}{ll}
a \otimes a+b \otimes c & a \otimes b+b \otimes d \\
c \otimes a+d \otimes c & c \otimes b+d \otimes d
\end{array}\right]
$$

- Co-unit $\varepsilon: A \rightarrow K$ (K is the field for our algebra, such as \mathbb{C})

$$
\varepsilon(P)=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

- Antipode $\gamma: A \rightarrow A$
$\gamma(P)=\left[\begin{array}{cc}d & -q b \\ -q^{-1} c & a\end{array}\right]$

End.

