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Abstract

This project studies a number of different drum models and finds the frequen-
cies of their vibrational modes. The standard drum is investigated, along
with the Indian drum called the tabla. A tabla consists of the right-handed,
concentrically loaded drum and the left-handed, eccentrically loaded drum.
Two and three-density models are used to approximate the right-handed
tabla and the three-density model is found to produce eigenfrequencies that
have very good agreement with experimental values. The effect of damping
on the drum is also calculated and a different method for solving the two-
density model is investigated, which can also be used to solve the left-handed
drum.
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Chapter 1

Introduction

The Tabla is a precussion instrument that originates from northern India and consists of
two drums. The instrument has widespread use within both classical and popular music
and is comprised of a pair of small drums that are played by striking the membrane with
the hand. The tabla is shown in Figure 1.1 .

Figure 1.1: The tabla1. The right-handed drum is on the left and the

left-handed drum is on the right.

1.1 The Tabla

The precise origins of the tabla are unclear but it is thought to have evolved in the
18th century. The older instruments of the pakhawaj and mridangam are believed to
have influenced its development. These drums have a membrane with properties that are
similar to the tabla.

The two drums that make up the tabla have many common characteristics, but also distinct
differences. The right-handed drum is called the tabla and the left-handed drum is called
the dāyāñ. Both drums have a membrane that is made from goatskin. Upon the edge of
this membrane an outer halo of skin is placed. This is made from a different skin, commonly

1Image from http://artdrum.com/
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a cow’s or a buffalo’s, and is known as the ‘Chati’. In addition to this, a loaded region
known as the ‘Syahi’, is added to the middle of the membrane [CT]. The special properties
of the tabla result mainly from the contribution of the syahi. It gives the central area of
the membrane a significantly greater radial density than the surrounding membrane. The
syahi consists of a combination of flour, water, and a mixture made from iron and other
substances. It is constructed by adding thin layers of this mixture to the drum membrane
and is crucial for creating the tone quality of the instrument. The successive layers are
initially applied with a constant radius, then the radius of application is gradually reduced
to the smallest radius of application of about a centimeter. This process is repeated a few
times creating a thickness gradient within the syahi [CK]. This can clearly be seen in
Figure 1.2 . The construction process means the difference in thickness between the six or
seven layers within the syahi are much smaller than the difference in thickness between
the edge of the syahi and the membrane. Ramakrishna and Sondhi [RS] give experimental
values (stated later in Section 3.2.1) for the density ratio and the radius ratio between the
two regions of the tabla in normal use.

Figure 1.2: The membrane of the tabla with the syahi and chati

labelled2. The picture shows that the thickness of the syahi is not con-

stant.

Despite these similarities, the two drums differ in construction. The circular loaded re-
gion of the right-handed drum is concentrically placed, whereas the loaded portion of
the left-handed drum has an off-centre position (as seen in Figure 1.1). The shell of the
right-handed drum is constructed from wood, normally rosewood, and is hollow for ap-
proximately half its depth. In contrast, the shell of the left-handed drum is commonly
made from a metal, preferably brass or copper, although it is sometimes shaped from wood
or clay. The left-handed drum is also significantly larger than the right-handed drum.

Ramakrishna and Sondhi [RS] list the fundamental frequency of the right-handed tabla as
between 110Hz and 200Hz. Experiments carried out by Kapur [K] find the fundamental
frequency of the tabla used in his experiment to be 172Hz, which corresponds to the F
below middle C. In this work the exact frequency of F3 to 4 significant figures, 174.6 Hz,
will be used. The left-handed tabla is normally tuned to the fourth or fifth below the
right-handed (frequencies 116.5 Hz and 130.8 Hz) [TT]. Tuning of the tabla is achieved by
altering the tension of the membrane. A wooden peg, located between the straps that hold
the membrane and the shell together, can be moved up and down to tighten or slacken
the membrane. Fine tuning is attained by striking the braided ring around the membrane
with a hammer.

2Image from Wikimedia Commons and edited using Microsoft Powerpoint
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The technique used in playing the tabla can greatly affect the sound that is produced.
There are twelve basic tabla strokes involving different methods for striking the membrane
and all have distinct sounds and tone qualities [CKT].

Much of the early scientific work on the Tabla was undertaken by the nobel laureate Sir
Chandrasekhara Venkata Raman. His investigations showed that the overtones of the
tabla were harmonic and degenerate.

1.2 The Harmonicity of the Tabla

If a note is played on an instrument then additional vibrations at higher frequencies are
produced alongside the fundamental frequency (the pitch of the note). The human ear
perceives these as one note instead of hearing the harmonics separately. This constructs the
tone quality of the instrument. If an instrument is perfectly harmonic, the harmonics are
in integer multiples of the fundamental frequency. This can be described in the following
equation where fh is the harmonic frequency and f0 is the fundamental frequency:

fh = nf0 with n = {1, 2, ...} . (1.1)

A perfectly harmonic instrument sounds pleasing to the human ear because it replicates
the harmonics that are naturally produced by the human voice. An example of a harmonic
instrument is a violin or a flute. If an instrument is inharmonic, like an ordinary drum,
then the harmonics bear no relation to the integer ratio.

Raman’s experiments revealed the harmonic properties of the tabla. He found that a
number of the vibrational modes of the tabla share the same frequency, all of which are
close to perfectly harmonic frequencies. These degenerate modes do not appear in the
ordinary drum. Raman also found that the 6th harmonic and any higher harmonics are
sufficiently damped so that their contribution to the tone of the instrument is insignificant
[IMD]. If these higher harmonics did contribute to the tabla’s tone then their effect could
only be detrimental to the tuning of the tabla’s harmonics as this would mean that a
greater number would require tuning.

The damping of the higher harmonics is achieved by the outer halo of skin (Chati). The
ampliltudes of vibration of the higher frequency harmonics are greater towards the edge of
the drum than those of the lower harmonics, relative to the amplitudes of the respective
vibrations near the centre (see Section 4.1). The damping effect of the Chati is therefore
much greater at higher frequencies while lower frequencies are comparatively uninfluenced.

Experiments carried out by Ramakrishna and Sondhi give values to the relative frequencies
of the harmonics for the right-handed tabla (Table 1.1). They state that the drummer
tunes to the second harmonic so this is the frequency that is used to calculate the relative
frequencies. The different modes of vibration are explained in more detail later on (Section
2.2) but are denoted ψnj , where n is the order and j is the root. As n and j increase, the
frequency of the mode increases. The different modes are excited with varying amplitudes
of vibration depending on where the membrane is struck. A strike near the edge of
the drum will excite the higher modes of vibration more than a strike at the centre.

6



The different strikes that are used by tabla players are called ‘notes’. Different notes are
produced by strikes in different locations. Also, a number of strikes involve lightly touching
the membrane with a finger other than the striking finger to prevent some vibrational
modes.

Frequency ratio

Mode
Tabla in Same Tabla with

normal use opened shell
ψ01 1.10 1.03
ψ11 2.00 2.00
ψ02 3.00 3.00
ψ21 3.00 3.00
ψ12 4.01 4.00
ψ31 4.03 4.00
ψ41 5.07 5.03
ψ22 5.07 5.08
ψ03 5.11 5.04

Table 1.1: Table showing the relative frequency of the modes of vibra-

tion of the right-handed tabla, taken from Rama. and Sondhi [RS]. The

2nd harmonic is defined as 2.00.

The models that will be produced in this work will not take into account the effect of the
air pressure within the shell, so the frequency values from the open shell are more relevant
to the subsequent models. These are also notably closer to the integer ratios.
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Chapter 2

The Model of an Ordinary Drum

To mathematically find the allowed frequencies of vibration for a drum, the wave equation
must be solved. The wave equation describes the propagation of a wave over time and
takes the form of a second order partial differential equation.

Initially the wave equation will be solved for an ordinary drum, modelled as a one-density
membrane. The method is described in ‘Music: A Mathematical Offering’, written by D.
Benson [B].

2.1 Solving the wave equation

The wave equation is given by

∂2z

∂t2
= c2∇2z , with c =

√
T

ρ
. (2.1)

z is the displacement of the medium from its equilibrium position, c is the propagation
speed of the wave and T and ρ are the tension and density of the medium. The membrane
of the drum is taken to be within the region of radius 0 ≤ r ≤ a and a number of
boundary conditions for the drum are imposed on the equation. The displacement must
be finite within the drum membrane and at the edge of the drum there is no displacement.
Additionally, the displacement is 2π periodic with respect to θ. These boundary conditions
are stated mathematically as

z(r) ∈ R when 0 ≤ r ≤ a , (2.2)
z(r) = 0 when r = a , (2.3)

z(θ) = z(θ + 2πn) . (2.4)

As the boundary conditions in the case of the drum depend upon the radius of the drum
and the angular coordinate θ polar coordinates are used as the coordinate system (shown
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in Figure 2.1). The Laplacian must therefore be of polar coordinate form, resulting in the
wave equation being expressed as

∂2z

∂t2
= c2

(
∂2z

∂r2
+

1
r

∂z

∂r
+

1
r2

∂2z

∂θ2

)
. (2.5)

Figure 2.1: The axes of the coordinate system of the drum with radius a 3

The solution to the wave equation will be in the form of a separable solution z(r, θ, t) =
f(r) g(θ)h(t). If this is substituted into equation (2.5) then it becomes

f(r) g(θ)htt(t) = c2

(
frr(r) g(θ)h(t) +

1
r
fr(r) g(θ)h(t) +

1
r2
f(r) gθθ(θ)h(t)

)
. (2.6)

To separate the variables both sides are now divided by f(r) g(θ)h(t) :

htt(t)
h(t)

= c2

(
frr(r)
f(r)

+
1
r

fr(r)
f(r)

+
1
r2

gθθ(θ)
g(θ)

)
. (2.7)

The left-hand side of this equation depends only on the variable t and the right-hand side
depends only on the variables r and θ. As each side of the equation depends on different
independent variables, the value of each side must be independent of all the variables, and
therefore a constant. The choice shall be made to call this constant k1 , giving

htt(t)
h(t)

= c2

(
frr(r)
f(r)

+
1
r

fr(r)
f(r)

+
1
r2

gθθ(θ)
g(θ)

)
= k1 . (2.8)

The equation that must be solved to find h(t) is therefore

htt(t) = k1h(t) . (2.9)

The general solution to this is

h(t) = B1e
√
k1t+κ1 +B2e

−
√
k1t+κ2 . (2.10)

3Image created using Microsoft Powerpoint
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A drum produces a note and therefore oscillates. To create oscillations the system needs
to be underdamped, requiring the condition k1 < 0 to hold, giving k1 = −ω2 and

h(t) = B1e
i(ωt+ϕ1) +B2e

−i(ωt+ϕ2) . (2.11)

The result needs to be real, so using the identity eiθ = cos θ + i sin θ and then taking the
real part produces

h(t) = B1 cos(ωt+ ϕ1) +B2 cos(ωt+ ϕ2) .

This can be rewritten as

h(t) = B1 cos(ωt+ ϕ1) +B2 cos(ωt+ ϕ1 − ϕ3) .

Using the trigonometric identity cos(u − v) = cosu cos v + sinu sin v allows this to be
written in the form

h(t) = B1 cos(ωt+ ϕ1) +B2

(
cos(ωt+ ϕ1) cos(ϕ3) + sin(ωt+ ϕ1) sin(ϕ3)

)
.

Grouping the terms together and rewriting the constants gives

h(t) = B3 cos(ωt+ ϕ1) +B4 sin(ωt+ ϕ1) .

The constants can again be restated as

h(t) = B5

(
b1 cos(ωt+ ϕ1) + b2 sin(ωt+ ϕ1)

)
, where b21 + b22 = 1 .

Knowing that cos2 θ + sin2 θ = 1, this allows h(t) to be given in the form

h(t) = B5

(
sin(ϕ4) cos(ωt+ ϕ1) + cos(ϕ4) sin(ωt+ ϕ1)

)
.

Using the trigonometric identity sin(u + v) = sinu cos v + cosu sin v, this can then be
rewritten

h(t) = B5 sin(ωt+ ϕ1 + ϕ4) ,

which then can finally be written as

h(t) = B sin(ωt+ ϕ) . (2.12)

This now gives the equation for z as z(r, θ, t) = f(r) g(r)B sin(ωt+ϕ). The next variable
to solve is θ.

The htt(t)
h(t) equality is discarded and the last two equalities from equation (2.8) are rear-

ranged to give

c2

(
frr(r)
f(r)

+
1
r

fr(r)
f(r)

)
+ ω2 = − c

2

r2

gθθ(θ)
g(θ)

.

If both sides are multiplied by r2

c2
then the resulting equation is

r2 frr(r)
f(r)

+ r
fr(r)
f(r)

+
ω2r2

c2
= −gθθ(θ)

g(θ)
. (2.13)
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Now with independent variables on separate sides of the equation, both sides can again
be set equal to a constant, this time called k2 :

r2 frr(r)
f(r)

+ r
fr(r)
f(r)

+
ω2r2

c2
= −gθθ(θ)

g(θ)
= k2 . (2.14)

This gives an equation for g(θ) that is identical to the equation (2.9) for h(t) :

gθθ(θ) = −k2g(θ) .

This can be be solved in the same manner as equation (2.9) using the 2π periodicity of θ
instead of the requirement of oscillations. This method produces the equation for g(θ) ,
giving

g(θ) = C sin(nθ + φ) , (2.15)

where n =
√
k2 ∈ Z . To satisfy the 2π periodicity (the 3rd boundary condition, equation

(2.4)) n must be an integer.

The equation from (2.14) that is now left to solve is

r2 frr(r)
f(r)

+ r
fr(r)
f(r)

+
ω2r2

c2
= n2 .

This is multiplied by f(r) and rearranged as

r2frr(r) + rfr(r) +
(
ω2

c2
r2 − n2

)
f(r) = 0 . (2.16)

The solution to this is given in Appendix 1 as equation (A.9), and is a linear combination
of Jn

(
ωr
c

)
and Yn

(
ωr
c

)
. However, Yn

(
ωr
c

)
will tend to infinity as r tends to zero. This

produces a singularity at r = 0 , which contradicts the boundary condition given by
equation (2.2). Therefore this part of the general solution is discarded. The z dependence
on r is now written

f(r) = DnJn

(ωr
c

)
. (2.17)

It is noted that the amplitudeDn depends on the order n of the Bessel function. Combining
all the components (2.12), (2.15) and (2.17) gives the solution to the original wave equation
(2.1) :

z = AnJn

(ωr
c

)
sin(ωt+ ϕ) sin(nθ + φ) , (2.18)

where An = BC Dn and is the amplitude of the vibration for the particular mode of
vibration.

11



Equation (2.18) describes the displacement for the mode of vibration at each position on
the drum membrane for the allowed frequencies. To find the permitted frequencies the
final boundary condition, equation (2.3) , is used. If this condition is used in equation
(2.18) , the following equation is obtained:

Jn

(ωa
c

)
= 0 . (2.19)

Taking a and c as constants, the substitution can be made that x = λa = ω
c a. As a and c

are constant the ratios of the different values of x are equal to the ratios of the different
ω values. The equation then simply becomes the Bessel function set equal to zero:

Jn(xnj) = 0 . (2.20)

When the equation is solved it will give the allowed ratios of the different frequencies of
the drum, ie. the eigenfrequencies. If equation (2.18) is written without time-dependence
then it becomes

ψnj = AnjJn(λnjr) sin(nθ + φ) , (2.21)

where λnj is restricted by the solutions of equation (2.20).

2.2 Frequencies of Vibration

Equation (2.20) is solved using Maple 12 software and the different solutions are labelled
in the following way. The root is denoted xnj , where the indices refer to the particular
solution. n is identical to the n from the above equations and indicates the order of the
Bessel function. j refers to the root number of this solution subset. The first root greater
than 0 for the given n is labelled j = 1 , the second root is labelled j = 2 , and so on.
To show more clearly the frequency ratios of the harmonics, every root is divided by the
x01 root (the solution relating to the fundamental frequency), hence defining the x01 root
as equal to 1. To comply with later notation and the notation of existing literature, the
relative frequency of the xnj root will be listed as the relative frequency of the ψnj mode
of vibration.

The vibrational modes with a frequency up to 5.5 times the fundamental frequency are
listed in the following table (Table 2.1). The work by Raman, described in the introduction,
found the harmonics of the tabla above the fifth harmonic of insignificant amplitude due
to damping effects. Although this damping is not present on the ordinary drum, this is
the harmonic chosen as the last entry of this table. This is, in part, due to the purpose of
this table being a comparison with the equivalent tables for the tabla models but also, as
there are infinitely many solutions, a place to stop needs to be chosen at some point.

Note that the ψ02 root is incorrrectly listed as having a frequency ratio of 2.40 in both
the Ramakrishna and Sondhi paper [RS] and the recent Gaudet et al. paper [GGL]. This
result has been double checked.

The graphs of these modes of vibration are shown in Section 4.1 .

12



Mode Frequency ratio Mode Frequency ratio
ψ01 1.000 ψ51 3.647
ψ11 1.593 ψ32 4.056
ψ21 2.136 ψ61 4.132
ψ02 2.295 ψ13 4.230
ψ31 2.653 ψ42 4.601
ψ12 2.917 ψ23 4.832
ψ41 3.155 ψ04 4.903
ψ22 3.500 ψ52 5.131
ψ03 3.598 ψ33 5.412

Table 2.1: Relative frequencies of the vibrational modes of the 1-

density drum membrane
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Chapter 3

The 2-Density Model

The model used here was first layed out in Ramakrishna and Sondhi’s 1954 paper, ‘Vibra-
tions of Indian Musical Drums Regarded as Composite Membranes’ [RS]. It models the
right-handed tabla which is approximated to a drum membrane that has two regions of
different density; the density of each region is constant. The syahi of the tabla is not of
constant density so this model will not fully reproduce the vibrations of the tabla. This
model also does not account for the effect of air pressure within the shell of the drum.

3.1 Solving the Wave Equation for the 2-Density Model

The radius of the inner region of the drum is a and the radius of the outer region is b (see
Figure 3.1). The right-handed drum will be solved here and the inner section (0 ≤ r ≤ a)
shall have a density ρ = ρ1, and the outer section (a ≤ r ≤ b) a density ρ = ρ2 .

As in the 1-density case, the solution of the wave equation, extended to two dimensions,
is required for a model of the drum:

∂2z

∂t2
= c2∇2z . (3.1)

The method for solving the wave equation is again by separation of variables, and to
separate the variable t, z can be written in the form z(r, θ, t) = ψ(r, θ)h(t), allowing the
wave equation to be written as

ψ(r, θ)h(t)tt = c2h(t)∇2ψ(r, θ) . (3.2)

The equation is divided by z(r, θ, t). This produces independent variables on each side
and allows both sides of the equation to be set equal to the constant −ω2. The equation
then becomes

14



htt
h

= c2∇2ψ

ψ
= −ω2 . (3.3)

The same method used in the 1-density case solves the function h(t) and again gives
h(t) = B sin(ωt + φ). The wave equation is now time-independent and written using the
function of ψ(r, θ). It is rearranged to give

∇2ψ +
ω2

c2
ψ = 0 , (3.4)

where, as before, c2 = T
ρ . The value of c is different for the different regions of the drum

as the density differs. The tension is uniform across both regions because the loading is
applied to the surface of the membrane. These different values define λi as

λ1 =
ω

c1
= ω

√
ρ1

T
when 0 ≤ r ≤ a ,

λ2 =
ω

c2
= ω

√
ρ2

T
when a ≤ r ≤ b .

Two different equations are now written for the two differents regions of the drum:

∇2ψ1 + λ2
1ψ1 = 0 0 ≤ r ≤ a , (3.5)

∇2ψ2 + λ2
2ψ2 = 0 a ≤ r ≤ b . (3.6)

The regions and their densities are shown in Figure 3.1 .

Figure 3.1: The regions of the 2 density model4

Next boundary conditions are imposed on the equations. The edge of the membrane is
fixed, so the displacement must equal zero at the edge of the drum. Also, where the
inner and outer sections of the membrane meet the function ψ and its gradient must be
equal for both regions. As the tension is constant for both sections the gradients are not

4Image from http://bobbysingh.com.au and edited using Microsoft Powerpoint
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stress-weighted. Additionally the function is 2π periodic and must be constant within the
region of the drum, giving the boundary conditions:

ψ(r, θ) ∈ R when 0 ≤ r ≤ b , (3.7)
ψ2(b, θ) = 0 , (3.8)
ψ1(a, θ) = ψ2(a, θ) , (3.9)

∂

∂r
ψ1(a, θ) =

∂

∂r
ψ2(a, θ) , (3.10)

ψi(r, θ) = ψi(r, θ + 2πn) . (3.11)

The equations (3.5) and (3.6) can then be solved in the same manner as the ordinary drum
but, unlike the normal drum, the solution to ψ2 must include the Bessel function of the
second kind because ψ2 does not exist at r = 0, so will not produce a singularity there.
This gives the solutions

ψ1(r, θ) = AnJn(λ1r) sin(nθ + φn) , (3.12)

ψ2(r, θ) = [BnJn(λ2r) + CnYn(λ2r)] sin(nθ + φn) . (3.13)

These equations must be altered so that they have equal displacement and gradient where
they meet. The frequencies of the vibrational modes can then be determined by solving
the equation at the edge of the drum.

If the solutions to the wave equation for the different regions (3.12 and 3.13) are entered
into the boundary conditions (3.8) and (3.9) they become:

BnJn(λ2b) + CnYn(λ2b) = 0 , (3.14)

AnJn(λ1a) = BnJn(λ2a) + CnYn(λ2a) . (3.15)

Entered into equation (3.10) the two halves of the equation for the gradient are:

∂

∂r
ψ1(a, θ) = λ1

(
− n

λ1a
AnJn(λ1a) sin(nθ + φn) +AnJn−1(λ1a) sin(nθ + φn)

)
, (3.16)

∂

∂r
ψ2(a, θ) = λ2

(
− n

λ2a
BnJn(λ2a) sin(nθ + φn) +BnJn−1(λ2a) sin(nθ + φn)

− n

λ2a
CnYn(λ2a) sin(nθ + φn) + CnYn−1(λ2a) sin(nθ + φn)

)
. (3.17)

These two are set equal to one another to satisfy (3.10). The sin(nθ + φn) term cancels
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out to give

λ1

(
− n

λ1a
AnJn(λ1a) +AnJn−1(λ1a)

)
= λ2

(
− n

λ2a
BnJn(λ2a) +BnJn−1(λ2a)

− n

λ2a
CnYn(λ2a) + CnYn−1(λ2a)

)
.

(3.18)

The next stage is to find an equation which is independent of all the coefficients so that it
can be solved to find the allowed frequency ratios. First (3.18) is divided by (3.15), which
cancels An out and now leaves the equation independent of one of the coefficients. This
equation is

λ1

λ2

Jn−1(λ1a)
Jn(λ1a)

=
BnJn−1(λ2a) + CnYn−1(λ2a)
BnJn(λ2a) + CnYn(λ2a)

. (3.19)

Dividing both the numerator and denominator of the right hand side by Cn produces

λ1

λ2

Jn−1(λ1a)
Jn(λ1a)

=
Bn
Cn
Jn−1(λ2a) + Yn−1(λ2a)
Bn
Cn
Jn(λ2a) + Yn(λ2a)

. (3.20)

To eliminate Bn and Cn from this equation, equation (3.14) is rearranged to the form
Bn
Cn

= −Yn(λ2b)
Jn(λ2b)

, which is the substituted in for Bn
Cn

. The equation becomes

λ1

λ2

Jn−1(λ1a)
Jn(λ1a)

=
−Yn(λ2b)
Jn(λ2b)

Jn−1(λ2a) + Yn−1(λ2a)

−Yn(λ2b)
Jn(λ2b)

Jn(λ2a) + Yn(λ2a)
. (3.21)

Rearranging this by multiplying the right by −Jn(λ2b)
−Jn(λ2b

produces

λ1

λ2

Jn−1(λ1a)
Jn(λ1a)

=
Yn(λ2b)Jn−1(λ2a)− Jn(λ2b)Yn−1(λ2a)
Yn(λ2b)Jn(λ2a)− Jn(λ2b)Yn(λ2a)

. (3.22)

There is now a change to one variable that depends on the frequency, for which the
equation can be solved. The quantities are defined as

x = λ2b =
ωb

c2
,

σ2 =
ρ1

ρ2
=
λ2

1

λ2
2

,

k =
a

b
.

It is noted that σ2 = λ2
1

λ2
2

is a fixed ratio equal to the ratio of densities and k is a fixed ratio
equal to the ratio of radii.
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The new quantities are now subsituted into (3.22) and this gives an equation that can be
numerically solved for x with a given σ2 and k. This is the equation whose solutions are
the frequency eigenvalues:

σ
Jn−1(σkx)
Jn(σkx)

=
Yn(x)Jn−1(kx)− Jn(x)Yn−1(kx)
Yn(x)Jn(kx)− Jn(x)Yn(kx)

. (3.23)

It is noted that this equation is undefined when k = 1 but the 1-density case can still be
solved by using σ = 1. When equation (3.23) is solved for x it will provide the permitted
relative frequencies of the modes of vibration. Provided the values for b (the radius of the

whole membrane) and c2, which can be calculated from the equation c =
√

T
ρ2

, are known
the frequency of the vibration can be found. Alternatively, knowing the values of b and
ρ2 and the desired frequency, the solution can tell the tabla player the tension to tighten
the drum to to achieve that frequency.

There will be more than one solution to this equation for a given n, σ and k, so the jth
root of equation (3.23) will be denoted xnj .

To get the equations of displacement of the two regions for each distinct xnj there will
be different ratios of Anj , Bnj and Cnj . Just one coefficient is wanted, Anj , which will
be the amplitude of the system. To obtain Bnj in terms of Anj the equation (3.14),
Cnj = −BnjJn(xnj)

Yn(xnj) , is substituted into equation (3.15), getting

AnjJn(σkxnj) = BnjJn(kxnj)−
BnjJn(xnj)
Yn(xnj)

Yn(kxnj) . (3.24)

Rearranging to make Bnj the subject, this becomes

Bnj = Anj
Jn(σkxnj)Yn(xnj)

Jn(kxnj)Yn(xnj)− Jn(xnj)Yn(kxnj)
. (3.25)

Similarly substituting from equation (3.14) Bnj = −CnjYn(xnj)
Jn(xnj) into equation (3.15), gives

Cnj as

Cnj = −Anj
Jn(σkxnj)Jn(xnj)

Jn(kxnj)Yn(xnj)− Jn(xnj)Yn(kxnj)
. (3.26)

The solutions of ψ for the two different regions are now

ψ1nj(r, θ) = AnjJn

(
σkxnj
a

r

)
sin(nθ + φn) , (3.27)

ψ2nj(r, θ) = Anj
Jn(σkxnj)

Jn(kxnj)Yn(xnj)− Jn(xnj)Yn(kxnj)

×
[
Yn(xnj)Jn

(xnj
b

r
)
− Jn(xnj)Yn

(xnj
b

r
)]

sin(nθ + φn) . (3.28)
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3.2 Tuning the 2-Density Drum

The harmonics frequencies of the tabla that are relevant to the 2-density model are the
relative frequencies of the open wooden shell from Table 1.1. The model doesn’t take into
account the air pressure, so the values for the tabla in normal use are not as applicable to
this model. The frequencies for the open shell tabla are very close to perfect harmonicity
so Ramakrishna and Sondhi, whose values depart much further from perfect harmonicity
than the real world values, chose to tune their membrane towards perfect harmonicity
rather than the observed values of tabla. This is the goal towards which tabla-makers
have evolved the tabla and it is assumed that this would be the tabla-maker’s ideal for
their constructed tabla. The 2-density model also has errors greater than the error between
perfect harmonicity and the experimental values. The approach of [RS] is therefore the
approach taken here, with the error calculated as departing from the perfect harmonics
rather than the observed frequencies.

3.2.1 Optimizing σ and k

There now exists a set of solutions to the eigenvalue equation that are denoted xnj . Each
solution is related to the frequency by the equation

xnj = 2πf b
√
ρ2

T
. (3.29)

b, ρ2 and T are constants so there is a linear relationship between xnj and the frequency.
For the drum to be perfectly in tune all the harmonics have to be integer ratios of the
fundamental frequency ie. xnj

x01
= 1, 2, 3... .

To get different solutions of xnj , σ and k can be varied and as this is done the proximity
of the xnj

x01
values to the integers changes. The harmonic error is a calculation of how far

the harmonics are from the integer multiples. The error shall be calculated from the error
defined by Gaudet et al. [GGL]. This weights the lower harmonics to mirror the increased
amplitude of these harmonics in the tabla and is given by

Error =
5∑

h=2

D∑
d=1

( xnj

x01
− h
h

)2

, (3.30)

where h is the integer value of the harmonic that xnj

x01
is closest to and D is the number of

degenerate modes. Harmonics h ≥ 6 are ignored due to the damping effect of the outer
halo. This error equation was not used by Ramakrishna and Sondhi who set k = 0.4 and
arrived at their value for σ by graphical methods.

Starting with the values given by Ramakrishna and Sondhi [RS], Maple 12 is used to vary
σ and k to 3 significant figures until the minimum error was reached (program C.2). This
optimizes σ and k to produce the lowest harmonic error within the model, assuming there
isn’t a local minimum between the [RS] values and the global minimum. It is recognised
that in practice it would be very difficult for tabla makers to achieve the three significant
figure level of precision using their construction techniques for the tabla (changing k by
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the third significant figure is a change of approximately 0.1mm). This level of precision is
included as it can still affect the harmonic ratios so that the frequency changes are within
the limit of the human ear (≈ 4Hz).

ψnj represents the modes of vibration relating to xnj

x01
. The optimal values in this case were

found to be σ = 3.15 and k = 0.401, with an error of 0.0044226 produced. The values of
σ and k found by [RS] for real-world tablas are

3 <σ < 4 , (3.31)
0.45 <k < 0.55 , (3.32)

meaning this value of k lies well outside the range. For a completely accurate model of
the right-handed tabla, the value of k must fall within this range. A comparison of the
frequencies of the different vibrational modes for the above values of k and σ are shown
in Table 3.1 .

Frequency ratio

Mode
Rama. and Sondhi Maple 12 optimization
σ = 3.125 k = 0.4 σ = 3.15 k = 0.401

ψ01 1.00 1.00
ψ11 1.94 1.94
ψ21 2.95 2.94
ψ02 3.05 3.05
ψ31 3.97 3.96
ψ12 4.10 4.10
ψ03 4.82 4.84
ψ41 4.97 4.96
ψ22 5.14 5.16

Error 0.0044500 0.0044226
Table 3.1: Comparison of frequency ratios of harmonics by varying σ

and k, with ψ03 as the 5th harmonic

From Table 3.1 it can be seen that the 2-density model has good agreement with perfect
harmonicity. As the tabla is approximately harmonic the model also has good agreement
with the tabla.

Gaudet, Gauthier and Léger [GGL] found that if ψ03 was set to be the 6th rather than 5th

harmonic then the error was significantly reduced. They also include the ψ13 harmonic as
part of their analysis as it then falls close to the 5th harmonic.

This departs even further from the real-world than the idealized membrane used by Ra-
makrishna and Sondhi. If the model is trying only to emulate the real-world tabla then
this could not be used as a technique for lowering the error as the ψ03 harmonic has been
experimentally found to fall close to the 5th harmonic. The significant lowering of the
error by this change raises interesting questions about the evolution of the drum. The
drum must have evolved through a stage similar to the two-density model and better
harmonicity at this stage would be achieved by a 6th harmonic for the ψ03 model.

Again σ and k have been varied to 3 significant figures. The optimal values in this case
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were found to be σ = 2.84 and k = 0.385, with an error of 0.0018872 produced. The
frequency eigenvalues for this result are shown in Table 3.2. With the placing of ψ03

at the 6th harmonic the values for both σ and k depart further from their experimental
values.

Frequency ratio

Mode
Gaud., Gauth. and Léger Maple 12 Optimization

σ = 2.9 k = 0.38 σ = 2.84 k = 0.385
ψ01 1.00 1.00
ψ11 1.96 1.95
ψ21 3.00 2.98
ψ02 3.05 3.04
ψ12 4.02 3.99
ψ31 4.05 4.03
ψ22 4.95 4.91
ψ41 5.09 5.06
ψ13 5.14 5.12
ψ03* 5.99 5.96
Error 0.0021392 0.0018872

Table 3.2: Comparison of frequency ratios of harmonics by varying σ and k,

with ψ03 as the 6th harmonic, therefore not included in error calculation

The difference between the errors of placing ψ03 at the two different harmonics shows
the greatly superior harmonicity of the ψ03 frequency when near the 6th harmonic. This
shows that for the idealized 2-density membrane greater harmonicity can be achieved with
a model that departs from the tabla.

Using the values of σ = 3.15 and k = 0.401 the tension in the membrane required to
produce a certain frequency can be found. The fundamental frequency x01 = 0.998 is used
in the equation. Rearranging equation (3.29) gives

T = 4π2f2 b
2ρ2

x2
01

(3.33)

A typical diameter and pitch of the right-handed tabla are 5.5" (radius of b=0.06985 m)1

and F3 (f = 174.6 Hz) is used. Using equation (3.33) and the density (0.24 kg m−2),
which was given for a synthetic drum membrane by Howle and Trefethen [HT], equates
to a required tension of 1415 N m−1. As the density of the tabla membrane is likely
to be greater than a synthetic drum membrane and the tightening mechanisms aren’t as
powerful this appears reasonable when compared to their value of tension for a kettledrum:
T=4415 N m−1.

1kksongs.org/tabla/chapter34.html
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Chapter 4

Modes of Vibration of the Drums
and a Comparison of the Models

The solutions to two different drums have now been calculated and, from these solutions,
graphs showing their vibrational characteristics can be created. A comparison between
the eigenfrequency ratios and the harmonicity of the drums can also be made.

4.1 Graphs of the Vibrational Modes

Using the displacement equation (2.21) for the 1-density drum and equations (3.27) and
(3.28) for the 2-density model with σ = 3.14 and k = 0.401, a time-independent graph for
each mode of vibration can be drawn. These graphs show the displacement at maximum
amplitude and are rotated to provide the best view rather than having a particular ori-
entation for θ. The graphs can be thought of as the actual membrane of the drum with
an exaggerated displacement. The edge of the graph represents the edge of the drum and
the surface of the graph represents the membrane of the drum at a moment in time.

The values of n and j are physically evident as n is equal to the number of diameter lines
that have a time-independent displacement of zero and j is equal to the number of circles
of constant r, including the edge of the drum, that have a time-independent displacement
of zero. The central high density region causes the 2-density model to have a different
profile of vibration than the 1-density drum. The graphs are notably different even though
the same restrictions due to n and j apply. The graphs are plotted by Maple 12 (using
program C.1).
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(a) 1-density (b) 2-density

Figure 4.1: ψ01(r, θ) for one-density and two-density concentric drum

(a) 1-density (b) 2-density

Figure 4.2: ψ02(r, θ) for one-density and two-density concentric drum

(a) 1-density (b) 2-density

Figure 4.3: ψ03(r, θ) for one-density and two-density concentric drum
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(a) 1-density (b) 2-density

Figure 4.4: ψ11(r, θ) for one-density and two-density concentric drum

(a) 1-density (b) 2-density

Figure 4.5: ψ12(r, θ) for one-density and two-density concentric drum

(a) 1-density (b) 2-density

Figure 4.6: ψ21(r, θ) for one-density and two-density concentric drum
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(a) 1-density (b) 2-density

Figure 4.7: ψ22(r, θ) for one-density and two-density concentric drum

(a) 1-density (b) 2-density

Figure 4.8: ψ31(r, θ) for one-density and two-density concentric drum

(a) 1-density (b) 2-density

Figure 4.9: ψ41(r, θ) for one-density and two-density concentric drum
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4.2 Comparison of Harmonicity

This section compares the eigenfrequencies from Tables 2.1 and 3.2 . The allowed frequen-
cies of the ordinary drum bear no relation to the frequencies of the harmonics creating
a completely inharmonic instrument. In contrast to this, if a constant region of higher
density is added to the centre of the drum then a model with good levels of harmonicity
can be created. In addition to the absense of any relation between the harmonics and
the eigenfrequency ratios, the 1-density drum also has a much greater number of allowed
frequencies between the fundamental frequency and the 5th harmonic. These differences
can clearly be seen in Figure 4.10 .

Figure 4.10: The relative frequencies of the harmonics belonging to

the 1-density and 2-density models, compared with ideal harmonicity

From the enclosed CD it can be heard that these sets of harmonics create effects that
are audibly very different from each other. The harmonics of the ordinary drum have no
discernable tuning and as expected produce a sound that bears relation to a normal drum.
The harmonics of the 2-density model produce a note that is audibly close to a harmonic
note, although there is clearly a level of tuning error.
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Chapter 5

The 3-Density Model

A 3-density model is a logical step to improve upon the harmonicity of the 2-density model
. This also mirrors the construction of the tabla whose loaded portion has an increase in
thickness towards its centre. After an abrupt change in radial density between the edge
of the syahi and the outer membrane the differences are then less pronounced within the
syahi. The 3-density model should better replicate the real-world tabla and reduce the
harmonic error. The relative densities of the inner two regions are expected to be closer
to equality than the relative densities of the outer two regions.

5.1 Solving the Wave Equation for the 3-Density Model

Using the same method as was used to solve the right-handed tabla, the wave equation of
a drum with three different densities is now solved. The inner-most section ( 0 ≤ r ≤ a )
shall have a density ρ = ρ1, the middle section ( a ≤ r ≤ b ) shall have ρ = ρ2 and the
outer section ( b ≤ r ≤ l ) shall have a density ρ = ρ3, l being the edge of the drum.

Again the two-dimensional wave equation is started with:

∂2z

∂t2
= c2∇2z . (5.1)

As before, to use a separation of variables method z(r, θ, t) is written in the form z(r, θ, t) =
ψ(r, θ)h(t), allowing the wave equation to be written as

ψ(r, θ)h(t)tt = c2h(t)∇2ψ(r, θ)) . (5.2)

The equation is divided by z(r, θ, t) = ψ(r, θ)h(t). This produces independent variables
on each side and allows both sides of the equation to be set equal to the constant −ω2.
The equation then becomes
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htt
h

= c2∇2ψ

ψ
= −ω2 . (5.3)

The solution to h(t) is the same as the previous cases: h(t) = sin(ωt+ ϕn).

Rearranging the right two equivalences of equation (5.3) produces the time-independent
equation

∇2ψ +
ω2

c2
ψ = 0 , (5.4)

where the value of c2 = T
ρ . The next step is to define λ for each region of the drum.

λ1 =
ω

c1
= ω

√
ρ1

T
when 0 ≤ r ≤ a ,

λ2 =
ω

c2
= ω

√
ρ2

T
when a ≤ r ≤ b ,

λ3 =
ω

c3
= ω

√
ρ3

T
when b ≤ r ≤ l .

Now the equations for each region of the drum can be written in the form

∇2ψ1 + λ2
1ψ1 = 0 0 ≤ r ≤ a , (5.5)

∇2ψ2 + λ2
2ψ2 = 0 a ≤ r ≤ b , (5.6)

∇3ψ3 + λ2
3ψ3 = 0 b ≤ r ≤ l . (5.7)

These regions and their densities are shown in Figure 5.1 .
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Figure 5.1: The regions of the 3 density model5

As before, the next step is to impose boundary conditions on the equations. The same
boundary conditions as the 2-density model are used but with the addition of two more.
There are now two different radii, a and b, where different sections of the membrane meet
and at both of these the function ψ and its gradient must be equal in the adjacent regions.

ψ(r, θ) ∈ R when 0 ≤ r ≤ l , (5.8)
ψ3(l, θ) = 0 , (5.9)
ψ1(a, θ) = ψ2(a, θ) , (5.10)
ψ2(b, θ) = ψ3(b, θ) , (5.11)

∂

∂r
ψ1(a, θ) =

∂

∂r
ψ2(a, θ) , (5.12)

∂

∂r
ψ2(b, θ) =

∂

∂r
ψ3(b, θ) , (5.13)

ψ(r, θ) = ψ(r, θ + 2πn) . (5.14)

Equations (5.5), (5.6) and (5.7) can then be solved in the same manner as the normal
drum but, unlike the normal drum, the solutions to ψ2 and now ψ3 must include the
Bessel function of the second kind because the domains of both ψ2 and ψ2 do not include
r = 0, so will not produce a singularity. This property and the solution of the wave
equation for each region gives the general solutions

ψ1(r, θ) = AnJn(λ1r) sin(nθ + φn) , (5.15)

ψ2(r, θ) = [BnJn(λ2r) + CnYn(λ2r)] sin(nθ + φn) , (5.16)
5Image from http://bobbysingh.com.au and edited using Microsoft Powerpoint
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ψ3(r, θ) = [DnJn(λ3r) + EnYn(λ3r)] sin(nθ + φn) . (5.17)

If these results are entered into the boundary conditions (5.9), (5.10), (5.11), (5.12) and
(5.13), then (5.9), (5.10) and (5.11) become

DnJn(λ3l) + EnYn(λ3l) = 0 , (5.18)

AnJn(λ1a) = BnJn(λ2a) + CnYn(λ2a) , (5.19)

BnJn(λ2b) + CnYn(λ2b) = DnJn(λ3b) + EnYn(λ3b) (5.20)

and the two sides of equation (5.12) become

∂

∂r
ψ1(a, θ) = λ1

(
− n

λ1a
AnJn(λ1a) sin(nθ + φn) +AnJn−1(λ1a) sin(nθ + φn)

)
, (5.21)

∂

∂r
ψ2(a, θ) = λ2

(
− n

λ2a
BnJn(λ2a) sin(nθ + φn) +BnJn−1(λ2a) sin(nθ + φn)

− n

λ2a
CnYn(λ2a) sin(nθ + φn) + CnYn−1(λ2a) sin(nθ + φn)

)
. (5.22)

These two are put equal to one another to satisfy (5.12), with sin(nθ + φn) cancelling:

λ1

(
− n

λ1a
AnJn(λ1a) +AnJn−1(λ1a)

)
= λ2

(
− n

λ2a
BnJn(λ2a) +BnJn−1(λ2a)

− n

λ2a
CnYn(λ2a) + CnYn−1(λ2a)

)
.

(5.23)

Similarly, differentiating ψ2 and ψ3 and setting them equal to each other at b the boundary
condition (5.13) is observed producing

λ2

(
− n

λ2b
BnJn(λ2b) +BnJn−1(λ2b)−

n

λ2b
CnYn(λ2b) + CnYn−1(λ2b)

)
=

λ3

(
− n

λ3b
DnJn(λ3b) +DnJn−1(λ3b)−

n

λ3b
EnYn(λ3b) + EnYn−1(λ3b)

)
. (5.24)

The next step is find an equation which is independent of all the coefficients which will
provide the frequency eigenvalues when solved. First Bn

Cn
and Dn

En
are needed in a form

independent of the coefficients. Rearranging (5.18) gives

Dn

En
= −Yn(λ3l)

Jn(λ3l)
. (5.25)

To get Bn
Cn

equation (5.23) is divided by (5.19)

λ1

λ2

Jn−1(λ1a)
Jn(λ1a)

=
BnJn−1(λ2a) + CnYn−1(λ2a)
BnJn(λ2a) + CnYn(λ2a)

. (5.26)
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Dividing both the numerator and denominator of the right-hand side by Cn produces

λ1

λ2

Jn−1(λ1a)
Jn(λ1a)

=
Bn
Cn
Jn−1(λ2a) + Yn−1(λ2a)
Bn
Cn
Jn(λ2a) + Yn(λ2a)

. (5.27)

Rearranging this produces the equation

Bn
Cn

=
Yn−1(λ2a)Jn(λ1a)− λ1

λ2
Jn−1(λ1a)Yn(λ2a)

λ1
λ2
Jn−1(λ1a)Jn(λ2a)− Jn−1(λ2a)Jn(λ1a)

. (5.28)

This equation shall be defined as β(n, λ1, λ2, a)

β(n, λ1, λ2, a) ≡
Yn−1(λ2a)Jn(λ1a)− λ1

λ2
Jn−1(λ1a)Yn(λ2a)

λ1
λ2
Jn−1(λ1a)Jn(λ2a)− Jn−1(λ2a)Jn(λ1a)

. (5.29)

Now the two unused boundary conditions are used. Equation (5.24) is divided by (5.20)
to give

λ2

λ3

BnJn−1(λ2b) + CnYn−1(λ2b)
BnJn(λ2b) + CnYn(λ2b)

=
DnJn−1(λ3b) + EnYn−1(λ3b)
DnJn(λ3b) + EnYn(λ3b)

. (5.30)

The numerator and denominator of the left-hand side of the equation are divided by Cn
and the numerator and denominator of the right-hand side of the equation are divided by
En to produce

λ2

λ3

Bn
Cn
Jn−1(λ2b) + Yn−1(λ2b)
Bn
Cn
Jn(λ2b) + Yn(λ2b)

=
Dn
En
Jn−1(λ3b) + Yn−1(λ3b)
Dn
En
Jn(λ3b) + Yn(λ3b)

. (5.31)

Substituting in equations (5.25) and (5.28) to this equation and multiplying the right by
−Jn(λ3c)
−Jn(λ3c)

then gives

λ2

λ3

β(n, λ1, λ2, a)Jn−1(λ2b) + Yn−1(λ2b)
β(n, λ1, λ2, a)Jn(λ2b) + Yn(λ2b)

=
Yn(λ3l)Jn−1(λ3b)− Jn(λ3l)Yn−1(λ3b)
Yn(λ3l)Jn(λ3b)− Jn(λ3l)Yn(λ3b)

. (5.32)

There is now a change to one variable so that the equation can be solved. The new

31



quantities are defined as

y = λ3l =
ωl

c3
= ωl

√
ρ3

T
,

τ2 =
ρ1

ρ2
=
λ2

1

λ2
2

=
c2

2

c2
1

,

σ2 =
ρ2

ρ3
=
λ2

2

λ2
3

=
c2

3

c2
2

,

q =
a

b
,

k =
b

l
.

It is noted that σ2 and τ2 are a fixed ratio equal to the ratio of densities and k and q are
equal to the ratio of the radii.

The new quantities are now subsituted into equation (5.32) and this gives an equation that
can numerically solve for a given σ2, τ2, k and q. This is the equation whose solutions are
the frequency eigenvalues:

σ
β(n, y)Jn−1(σky) + Yn−1(σky)
β(n, y)Jn(σky) + Yn(σky)

=
Yn(y)Jn−1(ky)− Jn(y)Yn−1(ky)
Yn(y)Jn(ky)− Jn(y)Yn(ky)

, (5.33)

where

β(n, y) ≡ Yn−1(σkqy)Jn(στkqy)− τJn−1(στkqy)Yn(σkqy)
τJn−1(στkqy)Jn(σkqy)− Jn−1(σkqy)Jn(στkqy)

. (5.34)

Note that the eigenvalue equation needs both k 6= 1 and, from the β term, τ 6= 1 to be
defined.

The 2-density case can be solved in two ways from this 3-density model. If

k q = k2-density

σ = 1
τ = σ2-density

and equation (5.33) is solved then the eigenvalues will be the eigenvalues of the
2-density case. Alternatively, if

σ τ = σ2-density

k = k2-density

q = 1

the 3-density model can still solve the 2-density case. If σ τ = 1 then the 1-density
case can also be solved with this method.

The results from the 3-density model for both the 2-density and 1-density cases are
identical to their respective models.
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Equation (5.33) will be solved for y, which can in turn be used to find either w, l, ρ3 or T if
the others are known. If this equation is defined there will be an infinite number solutions
for a given σ, τ , k, q and each n. As in the previous cases the jth root of equation (5.33)
will be ynj where j = 1 is the first root greater than 0.

For each distinct ynj there will be different ratios of Anj , Bnj , Cnj , Dnj and Enj . Just
one coefficient, Anj , is wanted which will be the amplitude of the system. Bnj , Cnj , Dnj

and Enj are now found in terms of Anj .

To start with Bnj and Cnj will be obtained in terms of Anj . The equation (5.28) will
be rearranged to get Bnj = β(ynj)Cn and substituted into equation (5.19) getting the
equation

AnjJn(στkqynj) = β(ynj)CnJn(σkqynj) + CnYn(σkqynj) . (5.35)

If this is rearranged then the equation provides Cnj in terms of Anj :

Cnj = Anj
Jn(στkqynj)

β(ynj)Jn(σkqynj) + Yn(σkqynj)
. (5.36)

Again a substitution is made from equation (5.28) Bnj = β(n, y)Cn this time into equation
(5.35). Bnj is solved in terms of Anj to become

Bnj = Anj
β(ynj)Jn(στkqynj)

β(ynj)Jn(σkqynj) + Yn(σkqynj)
. (5.37)

The next stage is to find Dnj in terms of Anj . The above values of Bnj and Cnj are
substituted, along with the rearranged equation (5.18) Enj = −Dnj

Jn(ynj)
Yn(ynj) , into equation

(5.20), getting

DnjJn(kynj)−Dnj
Jn(ynj)
Yn(ynj)

Yn(kynj) =Anj
β(ynj)Jn(στkqynj)

β(ynj)Jn(σkqynj) + Yn(σkqynj)
Jn(σkynj)

+Anj
Jn(στkqynj)

β(ynj)Jn(σkqynj) + Yn(σkqynj)
Ynj(σkynj) .

(5.38)

This is rearranged to produce the result of Dnj in terms of Anj :

Dnj = Anj
β(ynj)Jn(σkynj) + Yn(σkynj)
β(ynj)Jn(σkqynj) + Yn(σkqynj)

Jn(στkqynj)Yn(ynj)
Jn(kynj)Yn(ynj)− Jn(ynj)Yn(kynj)

. (5.39)

Using the same method to find Enj gives

Enj = Anj
β(ynj)Jn(σkynj) + Yn(σkynj)
β(ynj)Jn(σkqynj) + Yn(σkqynj)

Jn(στkqynj)Jn(ynj)
Yn(kynj)Jn(ynj)− Yn(ynj)Jn(kynj)

. (5.40)

The solutions of ψ now only depend on one amplitude, Anj :
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ψ1(r, θ) = AnjJn

(
στkqynj

a
r

)
sin(nθ + φn) , (5.41)

ψ2 = Anj
Jn(στkqynj)

β(ynj)Jn(σkqynj) + Yn(σkqynj)

[
β(ynj)Jn

(
σkynj
b

r

)
+ Yn

(
σkynj
b

r

)]
sin(nθ + φn) ,

(5.42)

ψ3 = Anj
Jn(στkqynj) [β(ynj)Jn(σkynj) + Yn(σkynj)]

β(ynj)Jn(σkqynj) + Yn(σkqynj)

×
[

Yn(ynj)
Jn(kynj)Yn(ynj)− Jn(ynj)Yn(kynj)

Jn

(ynj
l
r
)

+
Jn(ynj)

Yn(kynj)Jn(ynj)− Yn(ynj)Jn(kynj)
Yn

(ynj
l
r
)]

sin(nθ + φn) . (5.43)

5.2 Tuning the 3-Density Drum

The set of solutions to the eigenvalue equation (5.33) are denoted ynj . Each solution is
related to the frequency by the equation

ynj = 2πf l
√
ρ3

T
. (5.44)

l, ρ3 and T are constants so there is a linear relationship between ynj and the frequency.
As in the 2-density case, for the drum to be perfectly in tune all the harmonics have to
be integer multiples of the fundamental frequency, ie. ynj

y01
= 1, 2, 3....

Varying σ, τ , k and q will produce different solutions of ynj and as these are varied the
proximity of the values ynj

y01
to the integers also changes. The objective is to get the

harmonics as close to the integers as possible and, as before, this is achieved with the
error equation, which is defined as

Harmonic Error =
5∑

h=2

D∑
d=1

(
ynj/y01 − h

h

)2

, (5.45)

where h is the integer value of the harmonic that ψnj is closest to and D is the number of
degenerate modes. As in the two-density model harmonics h ≥ 6 are ignored.

Minimizing the Harmonic Error produces a significantly greater problem when four, as
opposed to two, constants can be varied. A method of minimizing the error by varying
one constant at a time is impossible due to the erratic nature of the function, caused by
the large number of Bessel function terms on both the numerator and denominator. A
brute force method is used here for minimizing the error. A set of values for each of the
constants σ, τ , k and q are input into a Maple 12 program, written to trial every possible
permutation of these sets and return an error value for each set (C.3). The program then
selects the value with the lowest error and returns the error, along with the constants that
produced it. After the program is run with the initial sets of parameters another set of
parameters are input. These are chosen so the parameter that produced the minimum
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error in the previous program run is the median value of the new run and so the intervals
between the values in each set are reduced. Fine tuning is then done after this to get the
minimum error when the parameters are adjusted to three significant figures.

It is recognised that this method is not guaranteed to locate the global minimum. To do
this, a calculation would be needed with a number of permutations that would be orders of
magnitude greater, requiring a considerably more powerful computer and a large amount
of time available to access it.

After some sampling runs, using the two-density model and the physical tabla as guidelines,
it was decided to do two initial runs. This decision was made based on the limited available
time and computing power, along with the experimentally found values for the tabla. The
first set of parameters were chosen to be

σ τ k q

[2.6, 2.7 ... 4.1] [1.01, 1.06 ... 1.36] [0.3, 0.35 ... 0.7] [0.3, 0.35 ... 0.7] , (5.46)

and the second set

σ τ k q

[1.01, 1.06 ... 1.36] [2.5, 2.6 ... 4.0] [0.3, 0.35 ... 0.7] [0.3, 0.35 ... 0.7] . (5.47)

After this, runs with smaller intervals, centered around the lowest value of each set, were
made to locate a minimum.

When the ψ03 mode was placed at the 6th harmonic the optimal parameters were found
to be σ = 2.81, τ = 1.06, k = 0.390 and q = 0.339. These parameters produce an error
of 0.0015487 . In this case the minimal error is not greatly reduced from the two-density
model (error = 0.001886) and despite the extra calculations needed the more complex
model produces only a marginally superior result.

When the ψ03 mode was placed at the 5th harmonic the optimal parameters were found
to be σ = 4.62, τ = 1.21, k = 0.456 and q = 0.6132; these parameters produce an error of
0.00070534 . With this configuration the minimal error is significantly reduced from the
two-density model and the 6th harmonic 3-density model, producing an error of 0.0044226.

Despite the simplest model of the tabla (the 2-density model) achieving considerably better
harmonicity with the ψ03 mode placed at the 6th harmonic, when the more realistic 3-
density model is used the ψ03 mode placed at the 5th harmonic produces a significantly
lower error. This explains why the tabla possesses its particular harmonics.

As this method isn’t guaranteed to find the global minimum, if different sets of parameters
were chosen then the method may produce a lower error. The relative frequencies for the
different modes of vibration are given in Table 5.1 .

The real tabla is not perfectly harmonic as the harmonics depart slightly from the integer
ratios. To model the tabla the harmonic values of the actual tabla must be reproduced.
As the effect of the air pressure inside the tabla is not modelled the experimental values
with the shell opened out is relevant to this model (Table 1.1). If the error is calculated
by using the distance of the harmonics from the experimentally determined values then
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Frequency ratio

Mode
2-density drum 3-density drum ψ03 at 6th 3-density drum ψ03 at 5th

σ = 2.84 k = 0.385
σ = 2.81 τ = 1.06 σ = 4.62 τ = 1.21
k = 0.390 q = 0.339 k = 0.456 q = 0.613

ψ01 1.00 1.00 1.00
ψ11 1.95 1.96 1.96
ψ21 2.98 2.99 2.99
ψ02 3.04 2.97 2.99
ψ12 3.99 3.99 3.99
ψ31 4.03 4.04 4.02
ψ22 4.91 4.94 5.01
ψ41 5.06 5.07 5.05
ψ13 5.12 5.12 -
ψ03 - - 5.04

Error 0.0018906 0.0015487 0.00070534

Table 5.1: Comparison of error with respect to perfect harmonicity from a 2-density and a 3-density

model

different values for the frequency ratios are produced when the error is minimized. The
ψ03 5th harmonic is used to replicate the properties of the real-world tabla. As in the
experimental results the 2nd harmonic (y11) is defined with a frequency ratio of 2.00 .
To give the same significance to the overall error, and acknowledging the fact that the
fundamental frequency has a lower amplitude in practice than the 2nd harmonic, the error
for the ψ01 root is weighted

Error 01 =
(

2y01/y11 − 1.03
2

)2

. (5.48)

The other roots have the same weighting as before.

The result of the error minimization when the error is taken with respect to the experimen-
tal values produces an error of 0.00024740 when the parameters are σ = 2.74, τ = 1.14,
k = 0.476 and q = 0.513. The frequency ratios for the modes of vibration are shown below
in Table 5.2 .

Table 5.2 shows that there is excellent agreement between the optimized 3-density model
and the experimental values of the frequency ratios for the tabla. The 3-density model for
the tabla produces results that model the right-handed tabla to a high degree of accuracy.
The results are considerably better, with a significantly lower error, than the 2-density
model and the 3-density model also better replicates the physical properties of the tabla.
If the resulting frequencies for each model are listened to on the enclosed CD then it
can be heard that, with the correct parameters, the 5th harmonic 3-density model creates
overtones that are more harmonic than a 2-density model.
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Frequency ratio

Mode Experimental values
3-density drum

σ = 2.74 τ = 1.14
k = 0.476 q = 0.513

ψ01 1.03 1.06
ψ11 2.00 2.00
ψ21 3.00 2.99
ψ02 3.00 3.00
ψ12 4.00 4.00
ψ31 4.00 4.03
ψ41 5.03 5.04
ψ03 5.04 5.05
ψ22 5.08 5.08

Error 0 0.00024740
Table 5.2: Comparison of harmonic frequencies with the error calculated with

respect to the harmonics from experimental results

5.2.1 Bringing the Parameter Values Within their Physical Limits

To get a wholly accurate model of the tabla, not only do the harmonics have to match the
harmonics of the tabla but also the experimentally determined values for the radius and
density ratios. The values of these are given by Ramakrishna and Sondhi as 0.45 < k <
0.55 and 3 < σs < 4 . k has the same representation in both the 2 and 3-density models
but due to the extra higher density region in the 3-density model the value of σs must be
calculated from σ, τ and q. σs is assumed to be calculated from the average density of the
syahi and is equal to σ for the 2-density model, but for the 3-density model it is defined
as

σ2
s =

ρs
ρ3
, (5.49)

where ρs is the average density of the combined inner two regions relative to the outer
membrane. The 2-dimensional density for the syahi ρs is given by

ρs =
Mass
Area

=
∑n

i=1 ρiAreai
Area

. (5.50)

For the inner two regions of the 3-density model this becomes

ρs =
ρ1πa

2 + ρ2π(b2 − a2)
πb2

. (5.51)

Using q = a
b this simplifies to

ρs = ρ1q
2 + ρ2 − ρ2q

2 . (5.52)

Factorizing out ρ2 and with the identity τ2 = ρ1
ρ2

this gives

ρs =
(
ρ1

ρ2
q2 + 1− q2

)
ρ2 , (5.53)

and then
ρs =

[
q2(τ2 − 1) + 1

]
ρ2 . (5.54)
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If this is substituted back into the equation (5.49) the result is

σ2
s =

[
q2(τ2 − 1) + 1

] ρ2

ρ3
. (5.55)

Using σ2 = ρ2
ρ3

this becomes

σ2
s =

[
q2(τ2 − 1) + 1

]
σ2 . (5.56)

This equation allows the calculation of σs from the parameters of the 3-density model. For
the parameters that produce the minimal error with respect to the experimental values,
σs evaluates to 2.85 : outside the real-world values. The optimal parameters within the
allowed values of σs are therefore calculated (giving σs = 3.01 with σ = 2.88, τ = 1.15,
k = 0.480 and q = 0.526). Both values of k fall comfortably within the real world values.

Frequency ratio

Mode Experimental values
3-density drum 3-density drum
minimal error within σs values

σ = 2.74 τ = 1.14 σ = 2.88 τ = 1.15
k = 0.476 q = 0.513 k = 0.480 q = 0.526

ψ01 1.03 1.06 1.06
ψ11 2.00 2.00 2.00
ψ21 3.00 2.99 2.99
ψ02 3.00 3.00 3.01
ψ12 4.00 4.00 4.00
ψ31 4.00 4.03 4.03
ψ41 5.03 5.04 5.04
ψ03 5.04 5.05 5.08
ψ22 5.08 5.08 5.08

Error 0 0.00024740 0.00029252
Table 5.3: Comparison of harmonic frequencies with the error calculated with respect to the

harmonics from experimental results, including the values when the parameters are within their

physical limits

Table 5.3 shows that if the parameters are within the real world limits then the agreement
with the experimental values is only marginally decreased. If this restriction is placed
on the parameters then the model still provides good agreement with the experimentally
determined frequency ratios.

5.2.2 Summary

The 3-density model provides a very good method for replicating the eigenfrequency ratios
of the right-handed tabla and can greatly reduce the harmonic error from the 2-density
model. The model can almost exactly reproduce the experimental harmonic frequencies
but the density ratio of the syahi and membrane falls outside the experimental values. It is
noted, however, that the precision of the parameters that produced these results would be
difficult to achieve using the construction techniques of tabla-makers (see Section 3.2.1).
If the density ratio is limited to the experimental values the harmonic error is slightly, but
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not greatly, increased. It is audibly difficult to discern a difference between these models
and the experimental values (hear enclosed CD).
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5.3 Graphs of the Vibrational Modes of the 3-Density Model

The vibrational modes for the 3-density model, optimized to produce minimal error with
respect to the experimental values for the tabla (σ = 2.74, τ = 1.14, k = 0.476, q = 0.513)
are shown below.

(a) ψ01 (b) ψ02

Figure 5.2: ψ01(r, θ) and ψ02(r, θ) for 3-density concentric drum

(a) ψ03 (b) ψ11

Figure 5.3: ψ03(r, θ) and ψ11(r, θ) for 3-density concentric drum
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(a) ψ12 (b) ψ21

Figure 5.4: ψ12(r, θ) and ψ21(r, θ) for 3-density concentric drum

(a) ψ22 (b) ψ31

Figure 5.5: ψ22(r, θ) and ψ31(r, θ) for 3-density concentric drum

(a) ψ41

Figure 5.6: ψ41(r, θ) for 3-density concentric drum
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Chapter 6

A Damping Term

In a real world system damping affects the movement of the simple harmonic oscillator.
This effect can be included in the model for a drum.

When a force opposes the movement of the oscillating sytem, damped harmonic motion
occurs. In a real world system there can be many contributing factors resisting the motion.
The frictional force produced is linearly proportional to the velocity [FR]:

F = −µż (6.1)

where µ is the damping coefficient and ż is the velocity. The minus sign is present as
the force is resisting the motion. If this equation is made equal to Newton’s second law
and the acceleration is made the subject then the equation becomes z̈ = − µ

m ż. If this is
included into the 2D wave equation, as used for modelling the tabla, the wave equation
with the damping term is

z̈ = c2∇2z − µ

m
ż , (6.2)

If separation of variables is used as before (setting each side equal to the constant −ω2),
and the damping term is moved to the left, the result is

htt(t)
h(t)

+
µ

m

ht(t)
h(t)

= c2∇2ψ(r, θ)
ψ(r, θ)

= −ω2 . (6.3)

This equation is rearranged to find the solution of h:

htt +
µ

m
ht + ω2h = 0 . (6.4)

This can be written
ḧ+ 2αḣ+ ω2h = 0 , (6.5)

where α = µ
2m . To solve this equation a solution in the form h = Aeγt+ϕ1 can be taken.

This gives, when differentiated and substituted into equation (6.5),
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Aeγt+ϕ1(γ2 + 2αγ + ω2) = 0 . (6.6)

This is solved as a quadratic equation and gives the solutions

γ = −α±
√
α2 − ω2 , (6.7)

which can be rewritten as
γ = −α± i

√
ω2 − α2 . (6.8)

The two roots being referred to as γ1 and γ2, this is then put back into h = Aeγt+ϕ1 to
give the time dependent displacement as the general solution

h = Beγ1t+ϕ1 + Ceγ2t+ϕ1 . (6.9)

Substituting in the two roots and factorizing produces

h = e−αt
(
Bei(

√
ω2−α2 t+ϕ2) + Ce−i(

√
ω2−α2 t−ϕ2)

)
. (6.10)

As shown previously in Chapter 2 (2.9) this equation can be written in the form

h = Ae−αt cos(
√
ω2 − α2 t+ ϕ) . (6.11)

The angular frequency of this system is therefore

ωd =
√
ω2 − α2 , (6.12)

with ω being the angular frequency of an undamped system. From equation (6.11) it can
be seen that the amplitude of the system decays in the form Ae−αt.

It is noted that for harmonic motion to occur the system must be underdamped. An
overdamped or critically damped system will not oscillate. Therefore ω2 − α2 > 0. If
equation (6.12) is written instead in terms of frequency using ω = 2πf then the result is

fd =

√
f2 − α2

4π2
. (6.13)

If this is written as the natural frequency multiplied by a damping term it becomes

fd = f

√
1− α2

4π2f2
. (6.14)

An approximate value of α was found by varying the damping term in a synthesizing
program and aurally determining when the decay time seemed closest to the sound of a
tabla. The result found as that α ≈ 6.5. This value is used in equation (6.14), along with
the natural frequency of 174.6 Hz . The damped frequency is then calculated to be 174.597
Hz , which is indistinguishable to the human ear from the natural frequency. It can be
seen from equation (6.14) that the effect on the higher harmonics will be even smaller.
The damping of the membrane will therefore have a negligible effect on the frequency and
no correction needs to be made to the models.
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Chapter 7

The Variational Method for the
2-Density Model

Here a different method is used to solve the 2-density model of the tabla. This method
also has the potential to find the frequency eigenvalues of the asymmetric left-handed
tabla. The method used for the two and three density models cannot be used for the
asymmetric case as there is no solution to the partial differential equation that results
from the boundary conditions.

The left-handed tabla is of a similar composition to the right-handed tabla, but is loaded in
an eccentric manner. Bipolar coordinates can be used to describe the eccentric loading of
the membrane. The method used here includes the bipolar coordinate system which allows
the asymmetric case to also be solved using the same method. This method of finding the
vibrational modes of the Indian drum was first set out by Sarojini and Rahman [SR].

Using the modified bipolar coordinates and the scale factor which are derived in Appendix
B, along with the results of bipolar coordinates, the following operators result:

∇2 =

(
r2

4α + α− r cos θ
)2

α2

(
∂2

∂r2
+

1
r

∂

∂r
+

1
r2

∂2

∂θ2

)
, (7.1)

∇ =
r2

4α + α− r cos θ
α

(
∂

∂r
r̂ +

1
r

∂

∂θ
θ̂

)
, (7.2)

dS =
α2(

r2

4α + α− r cos θ
)2 rdrdθ . (7.3)

By employing these modified bipolar coordinates, the same wave equation and boundary
conditions can describe the asymmetric tabla.

These are
∇2ψ1 + λ2

1ψ1 = 0 for 0 ≤ r ≤ a , (7.4)

∇2ψ2 + λ2
2ψ2 = 0 for a ≤ r ≤ b , (7.5)
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where

λ1 =
ω

c1
= ω

√
ρ1

T
when 0 ≤ r ≤ a ,

λ2 =
ω

c2
= ω

√
ρ2

T
when a ≤ r ≤ b ,

and the boundary conditions are

ψ(r, θ) ∈ R when 0 ≤ r ≤ b , (7.6)

ψ2(b, θ) = 0 , (7.7)

ψ1(a, θ) = ψ2(a, θ) , (7.8)

∂

∂r
ψ1(a, θ) =

∂

∂r
ψ2(a, θ) , (7.9)

ψ(r, θ) = ψ(r, θ + 2πn) . (7.10)

However, with the modified bipolar scale factor present in the Laplacian, the wave equation
is not separable unless the scale factor is 1, which only happens in the concentric case
when α → ∞. This means a different method must be used to solve the equation if the
possibility of solving the asymmetric case is to remain open. The method used is the
Variational Method.

7.1 The Variational Method for solving the Left-Handed
Indian Drum

The wave equation for the drum is written in the form of a single equation

∇2ψ +
ω2ρ

T
ψ = 0 , (7.11)

where

ρ =

{
ρ1, if 0 ≤ r < a ,

ρ2, if a ≤ r ≤ b .
(7.12)

If equation (7.11) is rearranged then it produces

−ω
2

T
=
∇2ψ

ρψ
. (7.13)

The right-hand side can then be multiplied by ψ
ψ , then both the numerator and denomi-

nator integrated with respect to the surface, taken over the whole drum membrane:

−ω
2

T
=
∫
ψ∇2ψ dS∫
ρψ2 dS

. (7.14)

It can be shown, using the Divergence Theorem, that the numerator is equal to

−
∫
ψ∇2ψ dS =

∫
(∇ψ)2 dS . (7.15)
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This is demonstrated below.
The Divergence Theorem states that∫

Ω

(∇ · F) dV =
∫
∂Ω

F · n dS . (7.16)

If F = ψ∇ψ then the divergence theorem gives∫
Ω

(∇ · (ψ∇ψ)) dV =
∫
∂Ω

ψ∇ψ · n dS . (7.17)

Using the identity ∇ · (φA) = ∇φ ·A + φ∇ ·A the obtained result is∫
Ω

∇ψ · ∇ψdV +
∫
Ω

ψ∇2ψdV =
∫
∂Ω

ψ∇ψ · n dS . (7.18)

As boundary condition (7.6) states that ψ = 0 on the boundary, this means that∫
∂Ω

∇ψ · n dS = 0 , leaving

∫
Ω

∇ψ · ∇ψ dV +
∫
Ω

ψ∇2ψ dV = 0 . (7.19)

This can be rewritten as

−
∫
Ω

ψ∇2ψ dV =
∫
Ω

(∇ψ)2 dV . (7.20)

ψ and the scale factor are functions of only two variables (r and θ) and dV = dS dz.
This means the additional integration element dz will evaluate to the same constant
on both sides of the equation. The constant then cancels out, leaving

−
∫
ψ∇2ψ dS =

∫
(∇ψ)2 dS . (7.21)

This shows that equation (7.15) holds. The right-hand side of this can, using equations
(7.2) and (7.3), be written as∫

(∇ψ)2 dS =
∫ ( r2

4α + α− r cos θ
α

(
∂ψ

∂r
r̂ +

1
r

∂ψ

∂θ
θ̂

))2
α2(

r2

4α + α− r cos θ
)2 rdrdθ .

(7.22)
The scale factors and orthogonal vectors cancel out when the bracket is squared and leaves∫

(∇ψ)2 dS =
∫ [(

∂ψ

∂r

)2

+
1
r2

(
∂ψ

∂θ

)2
]
rdrdθ . (7.23)

The scale factor has been removed and the equation is therefore identical to the orthodox
polar coordinate equation. Equation (7.14) now becomes

ω2

T
=

∫ [(∂ψ
∂r

)2
+ 1

r2

(
∂ψ
∂θ

)2
]
rdrdθ∫

ρψ2 dS
. (7.24)

46



As in the first method for solving the 2-density drum, dimensionless quantities are now
introduced:

r = bs , (7.25)

x = λ2b =
ωb

c2
, (7.26)

σ2 =
ρ1

ρ2
=
λ2

1

λ2
2

, (7.27)

k =
a

b
, (7.28)

∆ =
b

2α
. (7.29)

The scale factor is divided through on both the numerator and denominator by α to
produce

1
1− 2r cos θ

2α + r2

4α2

=
1

1− 2∆s cos θ + ∆2s2
.

and the dimensionless quantities are subsituted into equation (7.24) . Together, this gives

x2

b2ρ2

=

2π∫
0

k∫
0

[
1
b2

(
∂ψ1

∂s

)2
+ 1

b2s2

(
∂ψ1

∂θ

)2
]
b2s dsdθ +

2π∫
0

1∫
k

[
1
b2

(
∂ψ2

∂s

)2
+ 1

b2s2

(
∂ψ2

∂θ

)2
]
b2s dsdθ

ρ1

2π∫
0

k∫
0

ψ2
1

(1−2∆s cos θ+∆2s2)2
b2s dsdθ + ρ2

2π∫
0

1∫
k

ψ2
2

(1−2∆s cos θ+∆2s2)2
b2s dsdθ

.

(7.30)

The b s on the numerator cancel and the left-side b2 cancels with the denominator b s.
The ρ2 is brought over the right-hand side, producing the equation

x2 =

2π∫
0

k∫
0

[(
∂ψ1

∂s

)2
+ 1

s2

(
∂ψ1

∂θ

)2
]
s dsdθ +

2π∫
0

1∫
k

[(
∂ψ2

∂s

)2
+ 1

s2

(
∂ψ2

∂θ

)2
]
s dsdθ

σ2
2π∫
0

k∫
0

ψ2
1

(1−2∆s cos θ+∆2s2)2
s dsdθ +

2π∫
0

1∫
k

ψ2
2

(1−2∆s cos θ+∆2s2)2
s dsdθ

. (7.31)

The scale factor disappears as ∆ tends to zero and the equation becomes the variational
integral for the concentric drum. A binomial expansion is now made on the square of the
scale factor and terms of order ∆3 or higher are discarded:

1
(1− 2∆s cos θ + ∆2s2)2 = 1 + 4∆s cos θ − 2∆2s2 + 3(4∆2s2 cos2 θ +O(∆3)),

Using the identity cos 2θ = 2 cos2 θ − 1 gives
1

(1− 2∆s cos θ + ∆2s2)2 = 1 + 4∆s cos θ − 2∆2s2 + 3(2∆2s2(cos 2θ + 1) +O(∆3)) .

This means the scale factor squared is now

1
(1− 2∆s cos θ + ∆2s2)2 ≈ 1 + 4∆s cos θ + 4∆2s2 + 6∆2s2 cos 2θ . (7.32)
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As ψ is 2π periodic, it can be written in the form of a Fourier series:

ψ1(s, θ) =
∞∑
n=0

ξn(s) cos(nθ) +
∞∑
n=1

ηn(s) sin(nθ), 0 ≤ s ≤ k ,

ψ2(s, θ) =
∞∑
n=0

φn(s) cos(nθ) +
∞∑
n=1

χn(s) sin(nθ), k ≤ s ≤ 1 .

(7.33)

(7.34)

The functions φn and χn can have a singularity at s = 0 , as is the case with Bessel
functions of the second kind.

The next stage is to substitute the Fourier series identities of ψ1 and ψ2 into equation (7.31)

and evaluate the θ integrals. To start with, the θ integral from the term
2π∫
0

k∫
0

(
∂ψ1

∂s

)2
s dsdθ

is evaluated.
(
∂ψ1

∂s

)2
is equal to

(
∂ψ1

∂s

)2

=

( ∞∑
n=0

∞∑
m=0

ξ′n(s)ξ′m(s) cos(nθ) cos(mθ)

)
+

( ∞∑
n=1

∞∑
m=1

η′n(s)η′m(s) sin(nθ) sin(mθ)

)

+ 2

( ∞∑
n=1

∞∑
m=1

ξ′n(s)η′m(s) cos(nθ) sin(mθ)

)
+ ξ′0(s)

∞∑
n=1

η′n(s) sin(nθ) (7.35)

This function is integrated with respect to θ in equation (7.31). One term of the above
function shall be integrated at a time. The

∑∞
n=0

∑∞
m=0 ξ

′
n(s)ξ′m(s) cos(nθ) cos(mθ) term

will be the first integrated and, to help notation, the definition

f ξξ(s) =
∞∑
n=0

∞∑
m=0

ξ′n(s)ξ′m(s)

is made. If the θ integral from equation (7.31) is evaluated for this term then, as n,m ≥ 0 ,
the result is

2π∫
0

f ξξ(s) cos(nθ) cos(mθ) dθ =


0 , if n 6= m,

2πf ξξ(s) , if n = m = 0 ,
πf ξξ(s) , if n = m ≥ 1 .

(7.36)

This allows the evaluated term to be written as

2π∫
0

∞∑
n=0

∞∑
m=0

ξ′n(s)ξ′m(s) cos(nθ) cos(mθ) dθ = 2π(ξ′0)2 + π
∞∑
n=1

(ξ′n)2 (7.37)

The term
∑∞

n=1

∑∞
m=1 η

′
n(s)η′m(s) sin(nθ) sin(mθ), from equation (7.35), gives a slightly

different result when integrated with respect to θ between 0 and 2π as n = m = 0
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is not within the summation limits for this term. This time the definition fηη(s) =∑∞
n=1

∑∞
m=1 η

′
n(s)η′m(s) is made and the results are:

2π∫
0

fηη(s) sin(nθ) sin(mθ) dθ =

{
0 , if n 6= m,

πfηη(s) , if n = m ≥ 1 .
(7.38)

This allows the term to be written as

2π∫
0

∞∑
n=1

∞∑
m=1

η′n(s)η′m(s) sin(nθ) sin(mθ) dθ = π
∞∑
n=1

(η′n)2 (7.39)

For the remaining two terms the integral evaluates to zero:

2π∫
0

2

( ∞∑
n=1

∞∑
m=1

ξ′n(s)η′m(s) cos(nθ) sin(mθ)

)
dθ = 0 (7.40)

2π∫
0

ξ′0(s)
∞∑
n=1

η′n(s) sin(nθ) dθ = 0 (7.41)

The evaluated θ integral for the function found in equation (7.35) is therefore just equations
(7.37) and (7.39) added together, giving

2π∫
0

(
∂ψ1

∂s

)2

dθ = 2π(ξ′0)2 + π
∞∑
n=1

(ξ′n)2 + π
∞∑
n=1

(η′n)2 (7.42)

The same method is used for the 1
s2

(
∂ψ1

∂θ

)2
term from equation (7.31) and a similar result

is found. The differentiation with respect to θ causes the function to be multiplied by n2 ,
so there is no term for n = 0. The term evaluates to

2π∫
0

1
s2

(
∂ψ1

∂θ

)2

dθ = π
∞∑
n=1

1
s2
η2
nn

2 + π

∞∑
n=1

1
s2
ξ2
nn

2 (7.43)

Adding (7.42) and (7.43) together gives the total ψ1 part of the numerator, which is

2π

k∫
0

s ds(ξ′0)2 + π

k∫
0

s ds

∞∑
n=1

[
(ξ′n)2 + (η′n)2 +

1
s2

(
ξ2
nn

2 + η2
nn

2
)]

. (7.44)
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Exactly the same result comes from ψ2 and its respective functions, but with different
integration limits. The resulting total numerator is

2π

k∫
0

s ds(ξ′0)2 + π

k∫
0

s ds

∞∑
n=1

[
(ξ′n)2 + (η′n)2 +

1
s2

(
ξ2
nn

2 + η2
nn

2
)]

+ 2π

1∫
k

s ds(φ′0)2 + π

1∫
k

s ds
∞∑
n=1

[
(φ′n)2 + (χ′n)2 +

1
s2

(
φ2
nn

2 + χ2
nn

2
)]

. (7.45)

The denominator of (7.31) produces a more complex result. Taking only ψ1 to begin with,
then ψ2

1 in the denominator becomes

ψ2
1 =

∞∑
n=0

∞∑
m=0

ξn(s)ξm(s) cos(nθ) cos(mθ) +
∞∑
n=1

∞∑
m=1

ηn(s)ηm(s) sin(nθ) sin(mθ)

+ 2
∞∑
n=1

∞∑
m=1

ξn(s)ηm(s) cos(nθ) sin(mθ) + ξ0(s)
∞∑
n=1

ηn(s) sin(nθ) (7.46)

The ψ1 term of the denominator (equation 7.31) with the scale factor included then be-
comes

2π∫
0

ψ2
1(1 + 4∆2s2 + 4∆s cos θ + 6∆2s2 cos 2θ) dθ =

2π∫
0

[ ∞∑
n=0

∞∑
m=0

ξn(s)ξm(s) cos(nθ) cos(mθ)

+
∞∑
n=1

∞∑
m=1

ηn(s)ηm(s) sin(nθ) sin(mθ) + 2
∞∑
n=1

∞∑
m=1

ξn(s)ηm(s) cos(nθ) sin(mθ)

+ ξ0(s)
∞∑
n=1

ηn(s) sin(nθ)
]
(1 + 4∆2s2 + 4∆s cos θ + 6∆2s2 cos 2θ) dθ . (7.47)

The scale factor gives three different terms to multiply with ψ2
1 and integrate: a constant,

a cos θ term and a cos 2θ term. Different integrals are needed for when the scale factor
has cos θ and cos 2θ. For the (1 + 4∆2s2) term of the scale factor the same integrals as
the numerator apply, giving the result

σ2

k∫
0

(1 + 4∆2s2)[2πξ2
0 + π

∞∑
n=1

(ξ2
n + η2

n)]s ds . (7.48)

Finding the results of only the functions of θ, the 4∆s cos θ from the scale factor multiplies
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with the ψ2
1 to give integrals of

2π∫
0

cosnθ cosmθ cos θdθ =
1
4

(
sin((m− n− 1)x)

m− n− 1
+

sin((m− n+ 1)x)
m− n+ 1

+
sin((m+ n− 1)x)

m+ n− 1
+

sin((m+ n+ 1)x)
m+ n+ 1

) ∣∣∣∣2π
0

, (7.49)

2π∫
0

sinnθ sinmθ cos θ dθ =
1
4

(
sin((m− n− 1)x)

m− n− 1
+

sin((m− n+ 1)x)
m− n+ 1

+
sin((m+ n− 1)x)

m+ n− 1
+

sin((m+ n+ 1)x)
m+ n+ 1

) ∣∣∣∣2π
0

, (7.50)

2π∫
0

cosnθ sinmθ cos θ dθ = −1
4

(
cos((m− n− 1)x)

m− n− 1
+

cos((m− n+ 1)x)
m− n+ 1

+
cos((m+ n− 1)x)

m+ n− 1
+

cos((m+ n+ 1)x)
m+ n+ 1

) ∣∣∣∣2π
0

. (7.51)

For the special case of n = 0 in the first term of equation (7.49), the integral is

2π∫
0

cosmθ cos θdθ =
sin θ sinmθ +m cos θ cosmθ

1−m2

∣∣∣∣2π
0

. (7.52)

Looking at the denominator in (7.52), the integral evaluates to zero unless m = 1. If the
integral is calculated with m = 1 then a normal cos2 θ integral results, which evaluates to
π:

2π∫
0

cos θ cos θdθ =

2π∫
0

cos2 θdθ = π . (7.53)

The same value also exists for m = 0 , so multiplying this by 2 for the n,m = 0 case of
the 4∆s cos θ scale factor on the denominator produces

4∆s[2πξ0ξ1] . (7.54)

Now the sums of (7.49) to (7.51) have the limits
∑∞

m,n=1 as the m,n = 0 case has been
solved. Equations (7.49) to (7.51) will all evaluate to 0 unless one of the denominators is
zero. The conditions that must be satisfied are

m−n−1 = 0 , m−n+ 1 = 0 , m+n−1 = 0 , m+n+ 1 = 0 . (7.55)

The third condition and fourth conditions can’t be satisfied if m,n ≥ 1 , so the only
conditions needed to find the integral are m = n+ 1 or m = n− 1. Using this relation in
equation (7.49) gives

2π∫
0

cosnθ cos((n+ 1)θ) cos θ dθ =
1
8

(
sin 2nx
n

+
sin(2(n+ 1)x)

n+ 1
+ 2x+ sin 2x

) ∣∣∣∣2π
0

=
π

2
.

(7.56)
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This is multiplied by 2 as the other condition will have the same result, which gives

4∆s(π
∞∑
n=1

ξnξn+1) . (7.57)

As the integral for sinnθ sinmθ cos θ gives the same result, the function that result from
the sinnθ sinmθ cos θ is

4∆s(π
∞∑
n=1

ηnηn+1) . (7.58)

The equation (7.51) evaluates to 0 when n = m + 1, n = m − 1 for n,m ≥ 1 . Similarly
ξ0(s)

∑∞
n=1 ηn(s) sin(nθ) cos θ evaluates to zero when integrated between 0 and 2π. These

integrals will not contribute to the denominator.

The total denominator section for the 4∆s cos θ part of the scale factor is therefore

4∆s

[
2πξ0ξ1 + π

∞∑
n=1

(ξnξn+1 + ηnηn+1)

]
. (7.59)

The term for the 6∆2s2 cos 2θ part of the scale factor is derived in the same way and
produces the term

6∆2s2

[
π

2
(ξ2

1 − η2
1) + 2πξ0ξ2 + π

∞∑
n=1

(ξnξn+2 + ηnηn+2)

]
. (7.60)

The total denominator part from ψ1 is now

σ2

k∫
0

s ds(1 + 4∆2s2)[2πξ2
0 + π

∞∑
n=1

(ξ2
n + η2

n)] + 4∆s

[
2πξ0ξ1 + π

∞∑
n=1

(ξnξn+1 + ηnηn+1)

]

+6∆2s2

[
π

2
(ξ2

1 − η2
1) + 2πξ0ξ2 + π

∞∑
n=1

(ξnξn+2 + ηnηn+2)

]
.

(7.61)
Added to this is a similar expression for ψ2 in terms of φi and χi , but with the change of
integral limits to between k and 1 and without the σ2 weighting. The total denominator,
leaving out ∆3 and higher terms, can be written

σ2

k∫
0

s ds

{
(1 + 4∆2s2)[2πξ20 + π

∞∑
n=1

(ξ2n + η2
n)] + 4∆s

[
2πξ0ξ1 + π

∞∑
n=1

(ξnξn+1 + ηnηn+1)

]

+6∆2s2

[
π

2
(ξ21 − η2

1) + 2πξ0ξ2 + π

∞∑
n=1

(ξnξn+2 + ηnηn+2)

]}

+

1∫
k

s ds {a similar expression inφi andχi } .

The numerator was given back at equation (7.45).

All the cross product terms are of the form ξiξj , φiφj , ηiηj and χiχj . When ∆ = 0 these
all disappear. There are no cross product terms of the form ξiηj , φiχj or ξiχj , φiηj . This
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demonstrates that there is separation between the even and odd modes of vibration and
they can be stated separately. For the even modes of vibration all the terms with ξ and φ
are utilized and η and χ are set η = χ = 0. For the odd modes of vibration all the terms
with η and χ are utilized and ξ and φ are set ξ = φ = 0.

The even modes of vibration are therefore given by the following expression, if the sums
of the cross-terms are written out explicitly:

π

k∫
0

s ds

{
2ξ′20 +

∞∑
n=1

(ξ′2n + n2ξ2
n/s

2)

}
+ π

1∫
k

s ds

{
2φ′20 +

∞∑
n=1

(φ′2n + n2φ2
n/s

2)

}
(7.62)

is the numerator of the expression and

πσ2

k∫
0

s ds
{

2(1 + 4∆2s2)ξ20 + 2(4∆s)ξ0ξ1 + 2(6∆2s2)ξ0ξ2 + (1 + 7∆2s2)ξ21

+ (4∆s)ξ1ξ2 + (6∆2s2)ξ1ξ3 + (1 + 4∆2s2)ξ22 + (4∆s)ξ2ξ3 + (6∆2s2)ξ2ξ4 + ...
}

+ π

1∫
k

s ds {a similar expression in φi} (7.63)

is the denominator.

The odd modes of vibration replace ξi and φi with ηi and χi in equations (7.62) and (7.63),
although there are no η0 and χ0 terms and the (1 + 7∆2s2) coefficient that multiplys the
ξ2

1 and φ2
1 terms in the denominator becomes (1 + ∆2s2) when multiplying η2

1 and χ2
1.

With ψ1 and ψ2 written as Fourier series the boundary conditions (7.7), (7.8) and (7.9)
become

φn(1) = 0 , χn(1) = 0 , (7.64)
ξn(k) = φn(k) , ηn(k) = χn(k) , (7.65)
ξ′n(k) = φ′n(k) , η′n(k) = χ′n(k) (7.66)

with n=0,1,2... .

7.2 The Eigenfrequencies for the Concentric 2-Density Drum

The concentric case will now be investigated. This is the case where ∆ = 0, which relates
to the 2-density case investigated by Ramakrishna and Sondhi [RS]. For this case there is
no distinction between the even and odd modes of vibration so either ξn and φn or ηn and
χn may be used. The cases n = 0, 1, ... can be treated separately as s and θ are separable
when ∆ = 0 .

After using different trial functions for ξn(s) and φn(s), Sarojini and Rahman found that
the best results were related to the Taylor series of the Bessel function of the first kind
(A.5). φn(s), which represents the Bessel fucntion of the second kind in the exact case,
also has a logarithmic infinity. The functions used are:
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for n = 0

ξ0(s) = a0
0 + a0

2s
2 + a0

4s
4 + a0

0s
6 , (7.67)

φ0(s) = b00 + b02s
2 + c0

0 log s ; (7.68)

for n = 1

ξ1(s) = a1
1s+ a1

3s
3 + a1

5s
5 , (7.69)

φ1(s) = b11 + b13s
3 + c1

1s log s+ c1
3s

3 log s ; (7.70)

for n = 2

ξ2(s) = a2
2s

2 + a2
4s

4 + a2
6s

6 + a2
8s

8 , (7.71)

φ2(s) = b22s
2 + b24s

4 + c2
2s

2 log s+ c2
4s

4 log s ; (7.72)

Looking at the n = 0 case, the 3 boundary conditions (7.7), (7.8) and (7.9) can be used
to express 3 parameters from (7.67) and (7.68) in terms of the other parameters and k.

Using the boundary condition φ0(1) = 0, equation (7.68) becomes

φ0(1) = b00 + b0212 + c0
0 log 1 , (7.73)

which then simplifies to
0 = b00 + b02 . (7.74)

This gives

b00 = −b02 . (7.75)

Using equations (7.67) and (7.68) the boundary condition ξ′0(k) = φ′0(k) becomes

2a0
2k + 4a0

4k
3 + 6a0

6k
5 = 2b02k +

c0
0

k
. (7.76)

This gives c0
0 as

c0
0 =

(
2a0

2k + 4a0
4k

3 + 6a0
6k

5 − 2b02k
)
k . (7.77)

Substituting (7.75) and (7.77) into equation (7.68), the boundary condition ξ0(k) = φ0(k)
is written

a0 + a0
2k

2 + a0
4k

4 + a0
6k

6 = −b02 + b02k
2 +

(
2a0

2k + 4a0
4k

3 + 6a0
6k

5 − 2b02k
)
k log k . (7.78)

This gives a0
0 as

a0
0 = −b02 + b02k

2 +
(
2a0

2k + 4a0
4k

3 + 6a0
6k

5 − 2b02k
)
k log k − a0

2k
2 − a0

4k
4 − a0

6k
6 .

(7.79)
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Equations (7.75), (7.77) and (7.79) are then substituted into (7.67) and (7.68), and then
in turn into (7.33) and (7.34). As these are even modes of vibration the ηn and ξn terms
are discarded and, for the case where n = 0, ψ1 and ψ2 are given by

ψ1(s, θ) = (−b02 + b02k
2 +

(
2a0

2k + 4a0
4k

3 + 6a0
6k

5 − 2b02k
)
k logk − a0

2k
2

−a0
4k

4 − a0
6k

6 + a0
2s

2 + a0
4s

4 + a0
0s

6) cosnθ , (7.80)

ψ2(s, θ) = −b02 + b02s
2 + (2a0

2k + 4a0
4k

3 + 6a0
6k

5 − 2b02k)k log s . (7.81)

These expressions for ψ1 and ψ2 are then substituted into equation (7.31).

The system will exist in the lowest possible energy state allowed by the inital consitions
and the functions used for ξn(s) and φn(s). For an oscillator the lowest-energy system
will be the system with the lowest frequency. The minimization of x will minimize the
frequency of the vibration as x = λ2b = ωb

c2
.

The right-hand side is minimized by using Maple 12 to vary the parameters a0
2, a0

4, a0
6 and

b02. This gives the value of the lowest root for the concentric case where n = 0, k = 0.4,
σ = 3.125 and ∆ = 0. This evaluates to give x01 = 1.0068.

The different solutions for xnj must be orthogonal to one another. The equation that
must hold for orthogonal solutions is given in the appendix of Ramakrishna and Sondhi’s
paper [RS] and, when a change of variables from r to s is made, is of the form

k∫
0

2π∫
0

σ2 ψ1nj ψ1n′j′ s ds dθ +

1∫
k

2π∫
0

ψ2nj ψ2n′j′ s ds dθ = 0 . (7.82)

This equation guarantees orthogonality when n 6= n′. This is because the θ integral
evaluates to 0 for these cases as shown previously in equation (7.36). The equation is valid
for the concentric case because the scale factor of the Laplacian is equal to 1.

To find x02, equation (7.82) is used to restrict the values of the parameters. The values of
the parameters that produced the minimum value of x are used to give ξ0 and φ0 for x01:

ξ01(s) = a01
0 + a01

2 s
2 + a01

4 s
4 + a01

0 s
6 , (7.83)

φ01(s) = b01
0 + b01

2 s
2 + c01

0 log s . (7.84)

All the parameters are known from the minimization with a01
2 = 3.3610, a01

4 = −4.3383,
a01

6 = 10.091 and b01
2 = −0.088800. The other parameters a01

0 , b01
0 and c01

0 are calculated
from equations (7.75), (7.77) and (7.79).

ξ0 and φ0 for x02 are denoted

ξ02(s) = a02
0 + a02

2 s
2 + a02

4 s
4 + a02

0 s
6 , (7.85)

φ02(s) = b02
0 + b02

2 s
2 + c02

0 log s , (7.86)

and these equations, along with equations (7.33) and (7.34), and the found numerical
parameters of ψ1, are substituted into equation (7.82) and the equation is evaluated. b02

2
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is then given in terms of the ξ02 parameters as

b02
2 = −0.57748a02

2 − 0.17125a02
4 − 0.039508a02

6 . (7.87)

The right-hand side of equation (7.31) is again minimized with this new restriction on b02
2

and x02 is found to be equal to 3.0799 .

The x03 root has to satisfy orthogonality with both the x02 and x01 roots. This reduces
the free parameters for minimization to two, as the second orthogonality relation gives

a03
2 = −0.12266a03

4 − 0.011471a03
6 . (7.88)

When the minimization is carried out x03 is found to be equal to 4.897 .

The same method is used to find the values of x11, x12, x21 and x22. Due to the guaranteed
orthogonality when n 6= n′ , the minimization of the j = 1 functions can be implemented
with only the boundary conditions satisfied, just like the x01 case.

For x31 the following functions were used:

ξ3(s) = a31
3 s

3 + a31
5 s

5 + a31
7 s

7 + a31
9 s

9 , (7.89)

φ3(s) = b31
3 s

3 + b31
5 s

5 + c31
3 s

3 log s+ c31
5 s

5 log s . (7.90)

After minimization this produces the result x31 = 3.9675 . An attempt was made to find a
solution for x41 but Maple 12 could provide no evaluation with any accuracy or consistency
for the trial functions that were used.

The resulted for the roots are divided by x01 to give the frequency ratios. The following
table then compares them with the results from the previous method in Section 3 and the
results found by Sarojini and Rahman [SR].

Frequency ratio
Section 3 Saro. and Rahman Maple 12 minimization

ψ01 1.00 1.00 1.00
ψ11 1.94 1.94 1.94
ψ21 2.95 2.97 2.99
ψ02 3.05 3.06 3.06
ψ31 3.97 - 3.94
ψ12 4.10 4.15 4.15
ψ03 4.82 4.89 4.86
ψ22 5.14 - 5.15

Table 7.1: Comparison of frequency ratios of harmonics with σ = 3.125 and

k = 0.4, using the variational method

These results show that the variational method produces eigenfrequencies that have a high
degree of accuracy in replicating the previously solved analytical model. The boundary
conditions that are solved exactly by the 2-density model are solved numerically by this
method, hence the method’s effectiveness is determined by its agreement with the analyt-
ical solution. Unlike the method used in Section 3, this method can be extended to the
asymmetric case to model the left-handed drum. Some alterations are needed before this
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case can be solved. As ∆ 6= 0 for the asymmetric case, the cross product terms ξiξj , where
i 6= j, now remain in the denominator given by equation (7.63) . Because of the presence
of these terms, slight changes to the minimization method are required.
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Chapter 8

Conclusion

This project has found the frequencies of the different modes of vibration belonging to
three different drum models. The vibrational modes of the right-handed tabla have been
found experimentally to have frequencies that are very close to perfect harmonicity (in-
teger multiples of the fundamental frequency). The physical properties and construction
techniques for the tabla were initially discussed, along with the work on vibrational modes
by Sir C. V. Raman [IMD] and Ramakrishna and Sondhi [RS]. From this information,
models for the tabla were created to replicate these vibrational modes.

The initial problem solved was that of the standard, one-density, drum. The frequency
ratios of the vibrational modes of this model were found to have no apparent pattern.
The project then focused on modelling the right-handed tabla. The simplest model for
the right-handed tabla consists of two different concentric regions, each of constant density.
The model was solved and the parameters were optimized, which then enabled the model
to produce eigenfrequencies close to perfect harmonicity and in good agreement with the
experimental values of the right-handed tabla (Table 3.1) .

The report then constructed a three-density model for the right-handed tabla, which
produced eigenfrequency ratios in excellent agreement with the experimental values found
by Ramakrishna and Sondhi (Table 5.3). The results produced by the 3-density model
replicate the eigenfrequency ratios of the right-handed tabla more accurately than other
existing models, including the results of recent numerical work [SA] [MS]. It is noted,
however, that the precision of the parameters used to produce these results would be
difficult to achieve in practice (Section 3.2.1) . The loaded region of the tabla is constructed
with approximately seven layers and a model with even more density regions could better
replicate this. This would provide better agreement with the experimental values and
more stability in the parameters.

The next step of the project was to show that any damping within the membrane of the
tabla would have a negligible affect on the frequency. This allowed the damping term to
be excluded from the model.

A different method for solving the model was investigated that can also be used to solve
the left-handed tabla. This method produced results that have a high degree of accuracy
in replicating the previously solved analytical model.
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Appendix A

Bessel Functions

Bessel functions are solutions of Bessel’s Differential Equation, which is defined as:

x2 d
2y

dx2
+ x

dy

dx
+ (x2 − n2)y = 0 . (A.1)

Bessel functions discussed here have the common case where n is an integer. The general
solution to this equation is

y(x) = a1Jn(x) + a2Yn(x) , (A.2)

where A and B are constants and Jn(x) and Yn(x) are Bessel functions of the first and
second kind respectively.

Bessel functions of the second kind have a singularity at x = 0. Therefore if the function
has a finite value at x = 0 then a2 = 0 and the Bessel function of the second kind can be
ignored.

(a) Jn(x) (b) Yn(x)

Figure A.1: Bessel functions of the first and second kind for values of n = 0 (red), n = 1
(blue) and n = 2 (green)
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A.1 Properties of Bessel functions

A.1.1 Identities

Bessel functions have the following properties:

Jn+1(x) = 2n
x Jn(x)− Jn−1(x) , Yn+1(x) = 2n

x Yn(x)− Yn−1(x) ,

J ′n(x) = 1
2 [Jn−1(x)− Jn+1(x)] , Y ′n(x) = 1

2 [Yn−1(x)− Yn+1(x)] .
(A.3)

If the two equations of each kind are substituted into one another then the following two
equations for each kind are produced:

J ′n(x) = Jn−1(x)− n
xJn(x) , Y ′n(x) = Yn−1(x)− n

xYn(x) ,

J ′n(x) = n
xJn(x)− Jn+1(x) , Y ′n(x) = n

xYn(x)− Yn+1(x) .
(A.4)

The Bessel function of the first kind can be defined by its Taylor Series expansion around
x = 0, [ARF]:

Jn(x) =
∞∑
s=0

(−1)s

s! (n+ s)!

(x
2

)n+2s
. (A.5)

If −n replaces n in this equation, and noting the fact that (s − n)! → ∞ for s =
0, ..., (n−1) , the series can be started from s = n. It can then be seen that if n is negative
then the following identity holds:

J−n(x) = (−1)nJn(x) . (A.6)

The Bessel function of the second kind can be defined in the following way:

Yν(x) =
Jν(x) cos(νπ)− J−ν(x)

sin(νπ)
, (A.7)

Yn(x) = lim
ν→n

Yν(x) , (A.8)

where ν is a non-integer and n an integer. The non-integer Bessel function of the first
kind subsititues ν for n and replaces the factorial term (n+ s)! with the gamma function
Γ(ν + s+ 1) .

A.1.2 Bessel equation form with a solution of Jn(αx)

If the equation to be solved is of the form

x2
1

d2y

dx2
1

+ x1
dy

dx1
+ (α2x2

1 − n2)y = 0 , (A.9)
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then it can be solved by the substitution of x1 = x2
α . The chain rule dy

dx1
= dy

dx2

dx2
dx1

= α dy
dx2

is used, along with d2y
dx2

1
= d

dx1

(
dy
dx1

)
and d

dx1
= d

dx2

dx2
dx1

= α d
dx2

.

This gives d2y
dx2

1
= α2 d2y

dx2
2

, and the resulting equation is

x2
2

d2y

dx2
2

+ x2
dy

dx2
+ (x2

2 − n2)y = 0 .

Giving the general solution y(x2) = a1Jn(x2) + a2Yn(x2) , or

y(x1) = a1Jn(αx1) + a2Yn(αx1) . (A.10)

A.2 Bessel functions using Fourier theory

This section is outlined in Benson’s ‘Music: A Mathematical Offering’ [B].

Fourier theory states that any periodic function can be written in the form

f(θ) =
1
2
a0 +

∞∑
n=1

(an cos(nθ) + bn sin(nθ)) , (A.11)

where the coefficients are given by

an =
1
π

∫ π

−π
cos(nθ)f(θ)dθ , (A.12)

bn =
1
π

∫ π

−π
sin(nθ)f(θ)dθ . (A.13)

Bessel functions can be thought of as the fourier series applied to sin(x sin θ) and cos(x sin θ).

The function sin(x sin θ) is odd: sin(x sin θ) = − sin(x sin(−θ)). This means its fourier
coefficient an equals 0. It is also a half-period antisymmetric function: sin(x sin θ) =
− sin(x sin(θ − π)). This gives the coefficients b2n equal to zero, meaning only b2n+1

coefficients exist.

Now writing the general Fourier equation for sin(x sin θ) and using the Bessel function as
the coefficient along with a factor of 2 to tidy the equation up later, the equation obtained
is

sin(x sin θ) = 2
∞∑
n=0

J2n+1(x) sin((2n+ 1)θ) . (A.14)

The function cos(x sin θ) is even: cos(x sin θ) = cos(x sin(−θ)). This means its fourier coef-
ficient bn equals 0. It is also a half-period symmetric function: cos(x sin θ) = cos(x sin(θ−
π)). This gives the coefficients a2n+1 equal to zero, meaning only a2n coefficients exist.
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Now writing the general Fourier equation for cos(x sin θ) , as was done for the sin(x sin θ)
case, gives:

cos(x sin θ) = J0(x) + 2
∞∑
n=1

J2n(x) cos(2nθ) . (A.15)

Now the Bessel funciton is made the subject of the equation. Using the coefficient equation
(A.13) and setting bn = 2J2n+1(x) produces

2J2n+1(x) =
1
π

∫ π

−π
sin((2n+ 1)θ) sin(x sin θ)dθ . (A.16)

Using the properties of an even function results in the equation

J2n+1(x) =
1
π

∫ π

0
sin((2n+ 1)θ) sin(x sin θ)dθ . (A.17)

As seen while deriving equation (A.14) the function cos((2n+1)θ) cos(x sin θ) is half-period
antisymmetric and has the value 0 at π/2 , so

1
π

∫ π

0
cos((2n+ 1)θ) cos(x sin θ)dθ = 0 . (A.18)

Adding this to equation (A.16) gives

J2n+1 =
1
π

∫ π

0
[sin((2n+ 1)θ) sin(x sin θ) + cos((2n+ 1)θ) cos(x sin θ)]dθ . (A.19)

Using the trigonometric identity cos(a− b) = sin a sin b+ cos a cos b , this can be simplified
to

J2n+1 =
1
π

∫ π

0
cos ((2n+ 1)θ − z sin θ) dθ . (A.20)

Using a similar method for the an coefficient produces

J2n(x) =
1
π

∫ π

0
cos(2nθ − x sin θ)dθ . (A.21)

This gives use a common equation for both the odd and even integers and another definition
for the Bessel function:

Jn(x) =
1
π

∫ π

0
cos(nθ − x sin θ)dθ . (A.22)

Using the relation J−n(x) = (−1)nJn(x) , in addition to the even and odd properties of
sin(2n+ 1)θ and cos(2nθ) , allows equations (A.12) and (A.13) to be written as sums from
minus infinity to infinity as follows:

sin(x sin θ) =
∞∑

n=−∞
J2n+1(x) sin((2n+ 1)θ) , (A.23)
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cos(x sin θ) =
∞∑

n=−∞
J2n(x) cos(2nθ) . (A.24)

Using the same properties and equation (A.21) again it can also be seen that∑∞
n=−∞ J2n(x) sin(2nθ) = 0 and

∑∞
n=−∞ J2n+1(x) cos((2n + 1)θ) = 0 , leaving us able

to simplify the equations as

sin(x sin θ) =
∞∑

n=−∞
Jn(x) sin(nθ) , (A.25)

cos(x sin θ) =
∞∑

n=−∞
Jn(x) cos(nθ) . (A.26)

A.2.1 Deriving the recurrance relations

Now the equations found in (A.3) for Bessel functions of the first kind can be derived.
Starting with (A.25) it is differentiated with respect to θ giving

x cos θ cos(x sin θ) =
∞∑

n=−∞
Jn(x)n cos(nθ) . (A.27)

Now (A.26) is multiplied by x cos θ , producing

x cos θ cos(x sin θ) =
∞∑

n=−∞
Jn(x)x cos θ cos(nθ) . (A.28)

Then the trigonometric identity cos a cos b = 1
2(cos(a+ b) + cos(a− b)) is used on the

right hand side to produce

x cos θ cos(x sin θ) =
∞∑

n=−∞
Jn(x)

x

2
(cos((n+ 1)θ) + cos((n− 1)θ)) . (A.29)

The equation can then be separated into two parts and reindexed, as the limits of the sum
are ±∞ and the cos(nθ) s are independent:

x cos θ cos(x sin θ) =
∞∑

n=−∞
(Jn−1(x) + Jn+1(x))

x

2
cosnθ . (A.30)

If equation (A.27) is now used to get the left hand side as
∑∞

n=−∞ Jn(x)n cos(nθ), then,
after rearranging, the produced relation is

Jn+1(x) =
2n
x
Jn(x)− Jn−1(x) . (A.31)

To derive the other equation a similar method is used. Starting with (A.25), it is differ-
entiated with respect to x:

sin θ cos(x sin θ) =
∞∑

n=−∞
J ′n(x) sin(nθ) . (A.32)
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Now (A.25) is multiplied by sin θ getting

sin θ cos(x sin θ) =
∞∑

n=−∞
Jn(x) sin θ cos(nθ) . (A.33)

Then the trigonometric identity sin a cos b = 1
2(sin(a + b) + sin(a − b)) is used on the

right hand side to produce, along with the odd property of sine, producing

sin θ cos(x sin θ) =
∞∑

n=−∞
Jn(x)

1
2

(sin((n+ 1)θ)− sin((n− 1)θ)) . (A.34)

The equation can then be separated into two parts and reindexed, as the limits of the sum
are ±∞ and the sin(nθ) s are independent, giving

sin θ cos(x sin θ) =
∞∑

n=−∞

1
2

(Jn−1(x)− Jn+1(x)) sinnθ . (A.35)

If equation (A.32) is now used to get the left hand side as
∑∞

n=−∞ J
′
n(x) sin(nθ). This is

then rearranged to get the relation

J ′n(x) =
1
2

(Jn−1(x)− Jn+1(x)) . (A.36)
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Appendix B

Bipolar Coordinates

Bipolar coordinates are a two-dimensional, orthogonal system of coordinates that creates
two sets of circles on the two-dimensional plane.

B.1 Properties of Bipolar Coordinates

The bipolar coordinate system is defined by the transformation equations [BP]. The foci
are located at ±α (see Figure B.1).

The transformation equations are

x =
α sinh ξ

cosh ξ − cos θ
, y =

α sin θ

cosh ξ − cos θ
. (B.1)

Circles are produced when θ is constant of the form

x2 + (y − α cot θ)2 =
α2

sin2 θ
, (B.2)

and when ξ is constant circles are produced of the form

y2 + (x− α coth ξ)2 =
α2

sinh2 ξ
. (B.3)

The scale factor is given by the equation

hξ = hθ =
α

cosh ξ − cos θ
. (B.4)

The blue circles in Figure B.1 are the circles of constant ξ and the red circles are the circles
of constant θ. The asymmetric drum in the bipolar coordinate system is represented by
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Figure B.1: Bipolar coordinates with the foci located at (-1,0) and

(1,0)

two of the circles of constant ξ, one within the other. The outer circle represents the edge
of the drum membrane and the inner circle the loaded region. The circles of constant θ
are then the equivalent of radial lines in normal polar coordinates.

B.2 Finding the Circle Equations

To have Bipolar coordinates two different sets of circles must exist. One set when θ is
constant and one set when ξ is constant.

First the circle of constant θ will be derived. If the x equation from (B.1) is divided by
the y equation, it gives

x

y
=

sinh ξ
sin θ

. (B.5)

Using sinh ξ = ±
√

cosh2 ξ − 1 this can also be written

x

y
=
±
√

cosh2 ξ − 1
sin θ

. (B.6)

Multiplying both sides by sin θ produces

±
√

cosh2 ξ − 1 =
x

y
sin θ .

This is rearranged to make cosh ξ the subject, which gives

cosh ξ = ±

√
x2

y2
sin2 θ + 1 . (B.7)
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This is then substituted into the y equation (B.1) to give y as a function of one variable:

y =
α sin θ

±
√

x2

y2
sin2 θ + 1− cos θ

. (B.8)

To show this can satisfy a circle equation of the form
(x− a)2 + (y − b)2 = r2 it must be rearranged in the following manner:

(
±

√
x2

y2
sin2 θ + 1− cos θ

)
y = α sin θ . (B.9)

Both sides are then divided by y and the cos θ is moved across the equality giving

±

√
x2

y2
sin2 θ + 1 =

α

y
sin θ + cos θ . (B.10)

Squaring both sides then produces

x2

y2
sin2 θ + 1 =

α2

y2
sin2 θ +

2α
y

sin θ cos θ + cos2 θ . (B.11)

Both sides are next multiplyied by y2

sin2 θ
to give

x2 +
y2

sin2 θ
= α2 + 2αy

cos θ
sin θ

+ y2 cos2 θ

sin2 θ
, (B.12)

and are rearranged, resulting in

x2 + y2

(
1− cos2 θ

sin2 θ

)
− 2αy

cos θ
sin θ

− α2 = 0 . (B.13)

Using 1− cos2 θ = sin2 θ and 1−cos2 θ
sin2 θ

= 1 now gives

x2 + y2 − 2αy
cos θ
sin θ

− α2 1− cos2 θ

sin2 θ
= 0 . (B.14)

Factorizing this gives the circle equation when θ is constant, which has the form

x2 +
(
y − α

tan θ

)2
=

α2

sin2 θ
. (B.15)

If θ is constant then circles are produced as shown in Figure B.2 .

The same method is used to find the circles of constant ξ. Starting with equation (B.5)
and using sin θ =

√
1− cos2 θ gives

x2

y2
=

sinh2 ξ

1− cos2 θ
. (B.16)
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Figure B.2: Circles of constant θ with the foci located at (-1,0) and

(1,0) for values of θ = 0.5 (blue), θ = 1 (red) and θ = 1.5 (green)

This is rearranged to get

cos θ =

√
1− y2

x2
sinh2 ξ , (B.17)

and substituted into the x equation from (B.1) to give x as a function of ξ:

x =
α sinh ξ

cosh ξ −
√

1− y2

x2 sinh2 ξ
. (B.18)

Through rearranging this can become

1− y2

x2
sinh2 ξ =

(
cosh ξ − α

x
sinh ξ

)2
. (B.19)

Multiplying out the bracket produces

1− y2

x2
sinh2 ξ = cosh2 ξ − 2α

x
cosh ξ sinh ξ +

α2

x2
sinh2 ξ . (B.20)

Multiplying both sides by x2

sinh2 ξ
results in the equation

x2

sinh2 ξ
− y2 = x2 cosh2 ξ

sinh2 ξ
− 2αx

cosh ξ
sinh ξ

+ α2 . (B.21)

After grouping the terms together the equation becomes

x2 cosh2 ξ − 1
sinh2 ξ

− 2αx
cosh ξ
sinh ξ

+ α2 + y2 = 0 . (B.22)

Factorizing gives the circle equation for constant ξ:(
x− αcosh ξ

sinh ξ

)2

+ y2 =
α2

sinh2 ξ
. (B.23)

When ξ is constant the circles produced will be located as shown in Figure B.3 .
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Figure B.3: Circles of constant ξ with the focus located at (1,0) for

values of ξ = 0.5 (blue), ξ = 1 (red)and ξ = 2 (green)

B.3 Deriving the Bipolar Scale Factor

The simplist way to obtain the scale factor is through the line element, using the equation

(ds)2 = (dx)2 + (dy)2 = hξ(dξ)2 + hθ(dθ)2 . (B.24)

Differentiating x from equation (B.1) produces

dx = α

(
cosh ξ

cosh ξ − cos θ
+

− sinh2 ξ

(cosh ξ − cos θ)2

)
dξ − α sinh ξ sin θ

(cosh ξ − cos θ)2
dθ . (B.25)

The dξ terms are grouped together as one fraction giving

dx = α
cosh2 ξ − cos θ cosh ξ − sinh2 ξ

(cosh ξ − cos θ)2
dξ − α sinh ξ sin θ

(cosh ξ − cos θ)2
dθ . (B.26)

Using the identity cosh2 x− sinh2 x = 1 this becomes

dx = α
1− cos θ cosh ξ
(cosh ξ − cos θ)2

dξ − a sinh ξ sin θ
(cosh ξ − cos θ)2

dθ . (B.27)

Similarly, differentiating y from equation (B.1) gives

dy = α
− sin θ sinh ξ

(cosh ξ − cos θ)2
dξ + α

(
cos θ

cosh ξ − cos θ
+

− sin2 θ

(cosh ξ − cos θ)2

)
dθ , (B.28)

and when the dθ terms are written in the same fraction gives

dy = α
− sin θ sinh ξ

(cosh ξ − cos θ)2
dξ + α

cosh ξ cos θ − cos2 θ − sin2 θ

(cosh ξ − cos θ)2
dθ . (B.29)
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Using the identity cos2 x+ sin2 x = 1, the next step is

dy = α
− sin θ sinh ξ

(cosh ξ − cos θ)2
dξ + α

cosh ξ cos θ − 1
(cosh ξ − cos θ)2

dθ . (B.30)

Now, if (B.27) and (B.30) are squared and added together then they produce

(dx)2 + (dy)2 = α2

((
1− cos θ cosh ξ

(cosh ξ − cos θ)2

)2

+
(

sin θ sinh ξ
(cosh ξ − cos θ)2

)2
)

(dξ)2

+α2

((
sinh ξ sin θ

(cosh ξ − cos θ)2

)2

+
(

cosh ξ cos θ − 1
(cosh ξ − cos θ)2

)2
)

(dθ)2 + f(ξ, θ)dξdθ ,

(B.31)

where f(ξ, θ)dξdθ is the crossterm from squaring dx and squaring dy. If a common de-
nominator is found for the terms of each integral then the equation formed is

(dx)2 + (dy)2 = α2 1− 2 cos θ cosh ξ + cos2 θ cosh2 ξ + sin2 θ sinh2 ξ

(cosh ξ − cos θ)4
(dξ)2

+α2 sinh2 ξ sin2 θ + cosh2 ξ cos2 θ − 2 cosh ξ cos θ + 1
(cosh ξ − cos θ)4

(dθ)2 + f(ξ, θ)dξdθ . (B.32)

Using the substitution sin2 θ = 1− cos2 θ, gives

(dx)2 + (dy)2 = α2 1− 2 cos θ cosh ξ + cos2 θ cosh2 ξ + (1− cos2 θ) sinh2 ξ

(cosh ξ − cos θ)4
(dξ)2

+α2 sinh2 ξ(1− cos2 θ) + cosh2 ξ cos2 θ − 2 cosh ξ cos θ + 1
(cosh ξ − cos θ)4

(dθ)2 + f(ξ, θ)dξdθ .

(B.33)

Now using cosh2 θ − sinh2 θ = 1, produces

(dx)2 + (dy)2 = α2 1− 2 cos θ cosh ξ + cosh2 ξ − 1 + cos2

(cosh2 ξ − 2 cosh ξ cos θ + cos2 θ)2
(dξ)2

+α2 1 + cos2 θ + cosh2 ξ − 2 cos θ cosh ξ − 1
(cosh2 ξ − 2 cosh ξ cos θ + cos2 θ)2

(dθ)2 + f(ξ, θ)dξdθ . (B.34)

Both numerators cancel out with a factor of the denominator leaving us with the same
result for both scale factors:

(dx)2 + (dy)2 =
α2

cosh2 ξ − 2 cosh ξ cos θ + cos2 θ

[
(dξ)2 + (dθ)2

]
+ f(ξ, θ)dξdθ , (B.35)

or
(dx)2 + (dy)2 =

α2

(cosh ξ − cos θ)2
[
(dξ)2 + (dθ)2

]
+ f(ξ, θ)dξdθ . (B.36)
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The cross-terms produced in (B.31) are

f(ξ, θ)dξdθ = 2α
(1− cos θ cosh ξ)(− sinh ξ sin θ)

(cosh ξ − cos θ)2
dξdθ + 2α

(− sinh ξ sin θ)(cos θ cosh ξ − 1)
(cosh ξ − cos θ)2

dξdθ .

(B.37)

From the numerators it can be seen that the cross-terms cancel out leaving

f(ξ, θ)dξdθ = 0 . (B.38)

An orthogonal basis has been obtained with scale factors equal to

h2
ξ = h2

θ =
α2

(cosh ξ − cos θ)2
. (B.39)

The squares then cancel to give

hξ = hθ =
α

cosh ξ − cos θ
. (B.40)

B.4 Modified Bipolar Coordinates

Sarojini and Rahman use a modified bipolar coordinate system in their work on the asym-
metric Indian Drum [SR]. This gives a set of concentric circles if r is constant and α and
(α − z) approaches infinity. This is analagous to the right-handed drum with r and θ
ordinary polar coordinates. The transform is given by

r = 2αeξ , (B.41)

or
ξ = ln

r

2α
. (B.42)

Substituted in to the cartesian orthodox bipolar transforms in equations (B.1) produces

x = α
r

4α −
α
r

r
4α + α

r − cos θ
, y = α

sin θ
r

4α + α
r − cos θ

. (B.43)

If this is multiplied by 4αr
4αr it tidies up to

x =
r2 − 4α2

r2 + 4α2 − 4αr cos θ
, y =

4αr sin θ

r2 + 4α2 − 4αr cos θ
. (B.44)

The scale factor is modified by the change in variable. The Laplacian of unmodified bipolar
coordinates is given by

∇2 =
1
h2

(
∂2

∂ξ2
+

∂2

∂θ2

)
. (B.45)
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Now a substitution must be made for the ξ differential. Equation (B.41) is used to get

∂

∂ξ
=
∂r

∂ξ

∂

∂r
= r

∂

∂r
. (B.46)

Using the chain rule
∂2

∂ξ2
=

∂

∂ξ

(
r
∂

∂r

)
=
∂r

∂ξ

∂

∂r

(
r
∂

∂r

)
, (B.47)

∂2

∂ξ2
= r

∂

∂r
+ r2 ∂

2

∂r2
. (B.48)

The Laplacian is now

∇2 =
1
h2

(
r2 ∂

2

∂r2
+ r

∂

∂r
+

∂2

∂θ2

)
, (B.49)

or

∇2 =
r2

h2

(
∂2

∂r2
+

1
r

∂

∂r
+

1
r2

∂2

∂θ2

)
, (B.50)

which gives the ordinary polar coordinates Laplacian as the bracket with a scale factor. If
equation (B.40) is substituted into (B.50) the result is

∇2 =

(
r

4α + α
r − cos θ

)2
α2

r2

(
∂2

∂r2
+

1
r

∂

∂r
+

1
r2

∂2

∂θ2

)
. (B.51)

When used with polar coordinate identities this gives a modified bipolar coordinate scale
factor of

h =
α

r2

4α + α− r cos θ
. (B.52)
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Appendix C

Maple Programs

Included here are the Maple 12 programs used to solve the eigenvalue equation, draw
the graphs and optimize the parameters for minimum error. The limits within which the
different harmonics are searched for in the optimization programmes need to be altered if
the 1-density case is solved.

C.1 Solution and Graphs of the 2-Density Drum

Setting the parameters
> n := 0; sigma := 2.84; a := .385; b := 1; k := a/b; Amp := 1;

The 2-density eigenvalue equation
> c := sigma*BesselJ(n-1, sigma*k*x)/BesselJ(n, sigma*k*x)-(BesselY(n, x)*BesselJ(n-1,
k*x)-BesselJ(n, x)*BesselY(n-1, k*x))/(BesselY(n, x)*BesselJ(n, k*x)-BesselJ(n, x)*BesselY(n,
k*x));

Plot equation to locate roots
> plot(c, x = 0 .. 13, -100 .. 100);

Solve equation for chosen root
> d := fsolve(c = 0, x = 1 .. 2);

Radial plot of outer region
> e := Amp*BesselJ(n, sigma*k*d)*(BesselY(n, d)*BesselJ(n, d*r/b)-BesselJ(n, d)*BesselY(n,
d*r/b))/(BesselY(n, d)*BesselJ(n, k*d)-BesselJ(n, d)*BesselY(n, k*d));
> plot(e, r = 0 .. b, -1 .. 5);

Radial plot of inner region
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> f := Amp*BesselJ(n, sigma*k*d*r/a);
> plot(f, r = 0 .. b, -1 .. 5);

Radial plot of drum membrane
> g := plot(e, r = a .. b, -1 .. 1); h := plot(f, r = 0 .. a, -1 .. 1); with(plots);
> display(g, h);

3D plot of drum membrane
> i := plot3d([r, theta, e*cos(n*theta)], r = a .. b, theta = 0 .. 2*Pi, coords = cylindrical);
l := plot3d([r, theta, f*cos(n*theta)], r = 0 .. a, theta = 0 .. 2*Pi, coords = cylindrical,
colour=black); m := plot3d([r, theta, f*cos(n*theta)], r = 0 .. a, theta = 0 .. 2*Pi, coords
= cylindrical, style=wireframe,colour=grey);
> display(i, l, m);

C.2 Optimizing the 2-Density Parameters

Error calculation
> Error4 := proc (sigma, k) local x01, x02, x03, x11, x12, x13, x21, x22, x31, x41;
x01 := fsolve(sigma*BesselJ(-1, sigma*k*y)/BesselJ(0, sigma*k*y)-(BesselY(0, y)*BesselJ(-
1, k*y)-BesselJ(0, y)*BesselY(-1, k*y))/(BesselY(0, y)*BesselJ(0, k*y)-BesselJ(0, y)*BesselY(0,
k*y)) = 0);
x02 := fsolve(sigma*BesselJ(-1, sigma*k*y)/BesselJ(0, sigma*k*y)-(BesselY(0, y)*BesselJ(-
1, k*y)-BesselJ(0, y)*BesselY(-1, k*y))/(BesselY(0, y)*BesselJ(0, k*y)-BesselJ(0, y)*BesselY(0,
k*y)) = 0, y = 2*x01 .. 4*x01);
x03 := fsolve(sigma*BesselJ(-1, sigma*k*y)/BesselJ(0, sigma*k*y)-(BesselY(0, y)*BesselJ(-
1, k*y)-BesselJ(0, y)*BesselY(-1, k*y))/(BesselY(0, y)*BesselJ(0, k*y)-BesselJ(0, y)*BesselY(0,
k*y)) = 0, y = 5*x01 .. 7*x01);
x11 := fsolve(sigma*BesselJ(0, sigma*k*y)/BesselJ(1, sigma*k*y)-(BesselY(1, y)*BesselJ(0,
k*y)-BesselJ(1, y)*BesselY(0, k*y))/(BesselY(1, y)*BesselJ(1, k*y)-BesselJ(1, y)*BesselY(1,
k*y)) = 0, y = x01 .. 3*x01);
x12 := fsolve(sigma*BesselJ(0, sigma*k*y)/BesselJ(1, sigma*k*y)-(BesselY(1, y)*BesselJ(0,
k*y)-BesselJ(1, y)*BesselY(0, k*y))/(BesselY(1, y)*BesselJ(1, k*y)-BesselJ(1, y)*BesselY(1,
k*y)) = 0, y = 3*x01 .. 5*x01);
x13 := fsolve(sigma*BesselJ(0, sigma*k*y)/BesselJ(1, sigma*k*y)-(BesselY(1, y)*BesselJ(0,
k*y)-BesselJ(1, y)*BesselY(0, k*y))/(BesselY(1, y)*BesselJ(1, k*y)-BesselJ(1, y)*BesselY(1,
k*y)) = 0, y = 4*x01 .. 6*x01);
x21 := fsolve(sigma*BesselJ(1, sigma*k*y)/BesselJ(2, sigma*k*y)-(BesselY(2, y)*BesselJ(1,
k*y)-BesselJ(2, y)*BesselY(1, k*y))/(BesselY(2, y)*BesselJ(2, k*y)-BesselJ(2, y)*BesselY(2,
k*y)) = 0, y = 2*x01 .. 4*x01);
x22 := fsolve(sigma*BesselJ(1, sigma*k*y)/BesselJ(2, sigma*k*y)-(BesselY(2, y)*BesselJ(1,
k*y)-BesselJ(2, y)*BesselY(1, k*y))/(BesselY(2, y)*BesselJ(2, k*y)-BesselJ(2, y)*BesselY(2,
k*y)) = 0, y = 4*x01 .. 6*x01);
x31 := fsolve(sigma*BesselJ(2, sigma*k*y)/BesselJ(3, sigma*k*y)-(BesselY(3, y)*BesselJ(2,
k*y)-BesselJ(3, y)*BesselY(2, k*y))/(BesselY(3, y)*BesselJ(3, k*y)-BesselJ(3, y)*BesselY(3,
k*y)) = 0, y = 3*x01 .. 5*x01);
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x41 := fsolve(sigma*BesselJ(3, sigma*k*y)/BesselJ(4, sigma*k*y)-(BesselY(4, y)*BesselJ(3,
k*y)-BesselJ(4, y)*BesselY(3, k*y))/(BesselY(4, y)*BesselJ(4, k*y)-BesselJ(4, y)*BesselY(4,
k*y)) = 0, y = 4*x01 .. 6*x01); return (1/9)*(x02/x01-3)2+(1/4)*(x11/x01-2)2+(1/16)*(x12/x01-
4)2+(1/25)*(x13/x01-5)2+(1/9)*(x21/x01-3)2+(1/25)*(x22/x01-5)2+(1/16)*(x31/x01-4)2+
(1/25)*(x41/x01-5)2 end proc;

Parameter input
> Error4(2.84, .385);

C.3 Optimizing the 3-Density Parameters

Parameter input
> (sigmaValues, tauValues, kValues, qValues) := ({1.04, 1.05, 1.06}, {2.81, 2.82, 2.83},
{.37, .38, .39}, {.38, .39, .40});

Producing every permutation of parameters
> V := combinat[cartprod]([‘sigma;Values‘, ‘tau;Values‘, kValues, qValues]);
> T := table();
> for i while not V[finished] do T[i] := V[nextvalue]() end do;
> comb := [seq(T[j], j = 1 .. i-1)];

Error calculation
> Err1 := proc (sigma, tau, k, q) local x01, x02, x03, x11, x12, x13, x21, x22, x31, x41,
beta, beta1, beta2, beta3, beta4, TheError;
beta := (BesselY(-1, sigma*k*q*y)*BesselJ(0, sigma*tau*k*q*y)-tau*BesselJ(-1, sigma*tau*k*q*y)*
BesselY(0, sigma*k*q*y))/(tau*BesselJ(-1, sigma*tau*k*q*y)*BesselJ(0, sigma*k*q*y)-
BesselJ(-1, sigma*k*q*y)*BesselJ(0, sigma*tau*k*q*y));
beta1 := (BesselY(0, sigma*k*q*y)*BesselJ(1, sigma*tau*k*q*y)-tau*BesselJ(0, sigma*tau*k*q*y)*
BesselY(1, sigma*k*q*y))/(tau*BesselJ(0, sigma*tau*k*q*y)*BesselJ(1, sigma*k*q*y)-
BesselJ(0, sigma*k*q*y)*BesselJ(1, sigma*tau*k*q*y));
beta2 := (BesselY(1, tau*k*q*y)*BesselJ(2, sigma*tau*k*q*y)-tau*BesselJ(1, sigma*tau*k*q*y)*
BesselY(2, sigma*k*q*y))/(tau*BesselJ(1, sigma*tau*k*q*y)*BesselJ(2, tau*k*q*y)-BesselJ(1,
sigma*k*q*y)*BesselJ(2, sigma*tau*k*q*y));
beta3 := (BesselY(2, sigma*k*q*y)*BesselJ(3, sigma*tau*k*q*y)-tau*BesselJ(2, sigma*tau*k*q*y)*
BesselY(3, sigma*k*q*y))/(tau*BesselJ(2, sigma*tau*k*q*y)*BesselJ(3, sigma*k*q*y)-
BesselJ(2, sigma*k*q*y)*BesselJ(3, sigma*tau*k*q*y));
beta4 := (BesselY(3, sigma*k*q*y)*BesselJ(4, sigma*tau*k*q*y)-tau*BesselJ(3, sigma*tau*k*q*y)*
BesselY(4, sigma*k*q*y))/(tau*BesselJ(3, sigma*tau*k*q*y)*BesselJ(4, sigma*k*q*y)-
BesselJ(3, sigma*k*q*y)*BesselJ(4, sigma*tau*k*q*y));
x01 := fsolve(sigma*(beta*BesselJ(-1, sigma*k*y)+BesselY(-1, sigma*k*y))/(beta*BesselJ(0,
sigma*k*y)+BesselY(0, sigma*k*y))-(BesselY(0, y)*BesselJ(-1, k*y)-BesselJ(0, y)*BesselY(-
1, k*y))/ (BesselY(0, y)*BesselJ(0, k*y)-BesselJ(0, y)*BesselY(0, k*y)), y = 0 .. 2);
x02 := fsolve(sigma*(beta*BesselJ(-1, sigma*k*y)+BesselY(-1, sigma*k*y))/(beta*BesselJ(0,
sigma*k*y)+ BesselY(0, sigma*k*y))-(BesselY(0, y)*BesselJ(-1, k*y)-BesselJ(0, y)*BesselY(-
1,k*y))/(BesselY(0,y)*BesselJ(0, k*y)-BesselJ(0,y)*BesselY(0,k*y)), y = 2*x01 ..4*x01);
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x03 := fsolve(sigma*(beta*BesselJ(-1, sigma*k*y)+BesselY(-1, sigma*k*y))/(beta*BesselJ(0,
sigma*k*y)+BesselY(0, sigma*k*y))-(BesselY(0, y)*BesselJ(-1,k*y)-BesselJ(0,y)*BesselY(-
1,k*y))/ (BesselY(0,y)*BesselJ(0,k*y)-BesselJ(0,y)*BesselY(0,k*y)), y=4.5*x01 ..5.5*x01);
x11 := fsolve(sigma*(beta1*BesselJ(0, sigma*k*y)+BesselY(0, sigma*k*y))/(beta1*BesselJ(1,
sigma*k*y)+BesselY(1, sigma*k*y))-(BesselY(1, y)*BesselJ(0, k*y)-BesselJ(1, y)*BesselY(0,
k*y))/(BesselY(1, y)*BesselJ(1, k*y)-BesselJ(1, y)*BesselY(1, k*y)), y = x01 .. 3*x01);
x12 := fsolve(sigma*(beta1*BesselJ(0, sigma*k*y)+BesselY(0, sigma*k*y))/(beta1*BesselJ(1,
sigma*k*y)+BesselY(1, sigma*k*y))-(BesselY(1, y)*BesselJ(0, k*y)-BesselJ(1, y)*BesselY(0,
k*y))/ (BesselY(1, y)*BesselJ(1, k*y)-BesselJ(1, y)*BesselY(1, k*y)), y = 3*x01 .. 5*x01);
x13 := fsolve(sigma*(beta1*BesselJ(0, sigma*k*y)+BesselY(0, sigma*k*y))/(beta1*BesselJ(1,
sigma*k*y)+BesselY(1, sigma*k*y))-(BesselY(1, y)*BesselJ(0, k*y)-BesselJ(1, y)*BesselY(0,
k*y))/ (BesselY(1, y)*BesselJ(1, k*y)-BesselJ(1, y)*BesselY(1, k*y)), y = 4*x01 .. 6*x01);
x21 := fsolve(sigma*(beta2*BesselJ(1, sigma*k*y)+BesselY(1, sigma*k*y))/(beta2*BesselJ(2,
sigma*k*y)+BesselY(2, sigma*k*y))-(BesselY(2, y)*BesselJ(1, k*y)-BesselJ(2, y)*BesselY(1,
k*y))/(BesselY(2, y)*BesselJ(2, k*y)-BesselJ(2, y)*BesselY(2, k*y)), y = 2*x01 .. 4*x01);
x22 := fsolve(sigma*(beta2*BesselJ(1, sigma*k*y)+BesselY(1, sigma*k*y))/(beta2*BesselJ(2,
sigma*k*y)+BesselY(2, sigma*k*y))-(BesselY(2, y)*BesselJ(1, k*y)-BesselJ(2, y)*BesselY(1,
k*y))/ (BesselY(2, y)*BesselJ(2, k*y)-BesselJ(2, y)*BesselY(2, k*y)), y = 4*x01 .. 6*x01);
x31 := fsolve(sigma*(beta3*BesselJ(2, sigma*k*y)+BesselY(2, sigma*k*y))/(beta3*BesselJ(3,
sigma*k*y)+BesselY(3, sigma*k*y))-(BesselY(3, y)*BesselJ(2, k*y)-BesselJ(3, y)*BesselY(2,
k*y))/ (BesselY(3, y)*BesselJ(3, k*y)-BesselJ(3, y)*BesselY(3, k*y)), y = 3*x01 .. 5*x01);
x41 := fsolve(sigma*(beta4*BesselJ(3, sigma*k*y)+BesselY(3, sigma*k*y))/(beta4*BesselJ(4,
sigma*k*y)+ BesselY(4, sigma*k*y))-(BesselY(4, y)*BesselJ(3, k*y)-BesselJ(4, y)*BesselY(3,
k*y))/ (BesselY(4, y)*BesselJ(4, k*y)-BesselJ(4, y)*BesselY(4, k*y)), y = 4*x01 .. 6*x01);
TheError := (1/9)*(x02/x01-3)2+(1/4)*(x11/x01-2)2+(1/16)*(x12/x01-4)2+(1/25)*(x03/x01-
5)2+(1/9)*(x21/x01-3)2+(1/25)*(x22/x01-5)2+(1/16)*(x31/x01-4)2+(1/25)*(x41/x01-5)2;
if (0 <= TheError < 1) = true then return TheError else return undefined
end if end proc;

Error values for each permutation
> Error := map(‘@‘(Err1, op), comb);

Minimum error for set
> MinError := min[defined](Error);

Return parameters corresponding to minimum
> member(MinError, Error, ’p’);
> ParametersMin := comb[p];
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C.4 Minization in the Variational Method

This program find the value of x22 .

Define Parameters
> ∆ := 0; n := 2; k := 0.4; σ := 3.125;
> scale := 1+4*∆2*s2+4*∆*s*cos(θ)+6*∆2*s2*cos(2*θ);

Eliminating Parameters using the Boundary Conditions
> b2 := −b4;
> a2 := b2 + b4 ∗ k2 + c2 ∗ ln(k) + c4 ∗ k2 ∗ ln(k)− a4 ∗ k2 − a6 ∗ k4 − a8 ∗ k6;
> c2 := 2*(b2 + b4 ∗ k2 + c4 ∗ k2 ∗ ln(k)− a4 ∗ k2− a6 ∗ k4− a8 ∗ k6) + 4 ∗ a4 ∗ k2 + 6 ∗ a6 ∗ k4

+ 8 ∗ a8 ∗ k6 + 2 ∗ b4 − 4 ∗ b4 ∗ k2 − c4 ∗ (4 ∗ k2 ∗ ln(k) + k2);

Eliminating Parameter using Orthogonality
> b4 := −0.03814950200 ∗ a8− 0.1615789455 ∗ a6− 0.5178547004 ∗ a4− 0.5112898471 ∗ c4;

Functions for ψ1, ψ2

> ψ1 := (a2 ∗ s2 + a4 ∗ s4 + a6 ∗ s6 + a8 ∗ s8) ∗ cos(n ∗ θ);
> ψ2 := (b2 ∗ s2 + b4 ∗ s4 + c2 ∗ s2 ∗ ln(s) + c4 ∗ s4 ∗ ln(s)) ∗ cos(n ∗ θ);

The equation for x2

> d := int(s*((diff(ψ1, s))2+(diff(ψ1, θ))2/s2), [s = 0 .. k, θ = 0 .. 2*Pi]);
> e := int(s*((diff(ψ2, s))2+(diff(ψ2, θ))2/s2), [s = k .. 1, θ = 0 .. 2*Pi]);
> f := σ2*(int(s*ψ2

1*scale, [s = 0 .. k, θ = 0 .. 2*Pi]));
> g := int(s*ψ2

2*scale, [s = k .. 1, θ = 0 .. 2*Pi]);
> h := (d+e)/(f+g);

Minimization of x2

> with(Optimization); Normalizer := simplify; Minimize(h, iterationlimit = 10000);

The value of x
> sqrt(26.8591158221655206);
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Appendix D

CD Contents

Filename: perfectharmonicity.wav
This file contains the sound created if all the harmonics were in integer multiples.

Filename: ordinarydrum.wav
This is the sound of the harmonics produced by the ordinary drum, up to the 6th

harmonic.

Filename: 2density6th.wav
This file contains the sound produced by the best agreement with perfect harmonicity
for the 2-density model if the ψ03 root is placed at the 6th harmonic.

Filename: perfect3density6th.wav
This file contains the sound produced by the best agreement with perfect harmonicity
for the 3-density model if the ψ03 root is placed at the 6th harmonic.

Filename: perfect3density5th.wav
This is the sound produced by the best agreement with perfect harmonicity for the
3-density model if the ψ03 root is placed at the 5th harmonic. There is a notable
improvement over the 6th harmonic case.

Filename: experimental.wav
This file contains the sound created by the harmonics that were experimentally found
by Ramakrishna and Sondhi.

Filename: model3densitylimited.wav
This is the sound produced by the best agreement of the 3-density model with the
experimental values for the right-handed tabla.

Filename: model3densityminimal.wav
This is the sound produced by the best agreement with the experimental values for
the 3-density model when the relative density and radial ratio of the syahi and
membrane are within the physical limits of the right-handed tabla.
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