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Non-Newtonian fluid?

@ What is a fluid?
@ Stress tensor-o = —pl+ 1
@ Rate of strain tensor - 4 = 3 [Vu + (Vu)T]

@ p = pressure, | = identity tensor, 7 = extra stress tensor
V = gradient operator, u = velocity field

Newtonian fluid
T =py, = constant

Non-Newtonian fluid

T = pu(¥)y, = second invariant of %
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Carreau law

@ For shear thinning fluids, we require a model for the
viscosity function.

@ Carreau law (n =1 or A = 0 is the Newtonian case):

p=tm 1Bl papgpene )
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Viscosity
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Stability Analysis

@ General momentum equation for incompressible fluid is

0 1
<at+u-v>u_—Vp+ReV-r

@ 1 = const for Newtonian fluids, reducing above to the
(non-dimensional, unforced) Navier-Stokes equation:

0 1
— . = — —A
<8t+u V>u Vp+Re u,
where the Reynolds number is given by

Re = pLV /.

L = length scale, V = velocity scale
p = fluid density (assumed constant due to
incompressibility)
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@ Base solution (parallel shear flows):
U=U(y)ex, -1<y<1

with no slip boundary conditions.

@ This reduces the momentum equations to the following:
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Newtonian non-Newtonian
0 02U 0 0 ou
ReP 7~ Re-P — 2 ((3)5-
ox &y ox oy oy
@ We solve for U. The plots of the base solutions are as
follows: _
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Stability analysis

@ We perturb the base flow by letting:
u(x,y,z,t)y=U+u(x,y,zt)
p = po+ P
@ Sub this new u in to momentum equation, assume u small
and linearise.
@ Plane geometry so consider a Fourier expansion of the
disturbance:

B(x.y, 2,1) = i(y) e+921),

@ Temporal analysis: spatial wave numbers real, but
w = wr + iw;j.

@ Unstable is when w; > 0, stable otherwise.

@ Substitute into linearised momentum equation, eliminate p,
tidy up and get...
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Newtonian fluid

Orr-Sommerfeld and Squire equation

<
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@ Along with boundary conditions ¥ = DV = 0, this is a
generalised eigenvalue problem with eigenvalue w.



Newtonian fluid

Results

@ Eigenvalue spectrum for
Poiseuille flow,
2
0.1 [ . U(y):1—y.
-0.2 B LT - v...y.v..
303 O
£ 04
05F

0.1

-0.6
L0 [

-0.8

0 02 04 06 08 1




Newtonian fluid

Results

@ Eigenvalue spectrum for
Poiseuille flow,

-0 [ . uly) =1 _y2'

O I O A S S @ Weuseda =1, 3=0,

03 e and Re = 5772.

04}

0.1

Imw

05F
-06
-0.7

-0.8cl

02 04 06 08 1
Re w




Newtonian fluid

Results

@ Eigenvalue spectrum for
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Newtonian fluid

Results

02 04 06
Re w

08

Eigenvalue spectrum for
Poiseuille flow,
Uly)=1-y~
Weuseda=1,3=0,
and Re = 5772.

Done using Chebyshev
spectral collocation
method in MATLAB.

Red line is the line of
marginal stability,
w;j = 0.



non-Newtonian fluids

non-Newtonian fluids




non-Newtonian fluids

non-Newtonian fluids
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non-Newtonian fluids

The work to be done

@ We take the base profile before as data points and work
out the corresponding values of u, Du, u; etc.

@ Code it into MATLAB and compute eigenvalues.

@ Nouar et al. (2007) reported that shear thinning viscosity
stabilises the flow.

@ NOTE: All the above is a linear theory.

@ Question time?
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