Hydrodynamic Stability of Newtonian and Non-Newtonian fluids

Project IV Presentation

Julian Mak
Non-Newtonian fluid?

What is a fluid?

Stress tensor
\[\sigma = -pI + \tau \]

Rate of strain tensor
\[\dot{\gamma} = \frac{1}{2} \left(\nabla u + (\nabla u)^T \right) \]

\(p \) = pressure,
\(I \) = identity tensor,
\(\tau \) = extra stress tensor
\(\nabla \) = gradient operator,
\(u \) = velocity field

Newtonian fluid
\[\tau = \mu \dot{\gamma} \]
\(\mu \) = constant

Non-Newtonian fluid
\[\tau = \mu(\dot{\gamma}) \dot{\gamma} , \dot{\gamma} = \text{second invariant of} \ \dot{\gamma} \]
Non-Newtonian fluid?

- What is a fluid?
Non-Newtonian fluid?

- What is a fluid?
- *Stress tensor* - $\sigma = -pl + \tau$
Non-Newtonian fluid?

- What is a fluid?
- **Stress tensor** - $\sigma = -pl + \tau$
- **Rate of strain tensor** - $\dot{\gamma} = \frac{1}{2} \left[\nabla u + (\nabla u)^T \right]$
Non-Newtonian fluid?

- What is a fluid?
- Stress tensor - $\sigma = -pI + \tau$
- Rate of strain tensor - $\dot{\gamma} = \frac{1}{2} \left[\nabla u + (\nabla u)^T \right]$
- $\rho = \text{pressure}$, $I = \text{identity tensor}$, $\tau = \text{extra stress tensor}$
- $\nabla = \text{gradient operator}$, $u = \text{velocity field}$
Non-Newtonian fluid?

- What is a fluid?
- **Stress tensor** - $\sigma = -pl + \tau$
- **Rate of strain tensor** - $\dot{\gamma} = \frac{1}{2} [\nabla u + (\nabla u)^T]$
- $\rho = $ pressure, $I = $ identity tensor, $\tau = $ extra stress tensor
- $\nabla = $ gradient operator, $u = $ velocity field

Newtonian fluid

$$\tau = \mu \dot{\gamma}, \quad \mu = constant$$
Non-Newtonian fluid?

- What is a fluid?
- Stress tensor - \(\sigma = -pI + \tau \)
- Rate of strain tensor - \(\dot{\gamma} = \frac{1}{2} \left[\nabla u + (\nabla u)^T \right] \)
- \(p = \) pressure, \(I = \) identity tensor, \(\tau = \) extra stress tensor
- \(\nabla = \) gradient operator, \(u = \) velocity field

Newtonian fluid

\[\tau = \mu \dot{\gamma}, \quad \mu = \text{constant} \]

Non-Newtonian fluid

\[\tau = \mu (\dot{\gamma}) \dot{\gamma}, \quad \dot{\gamma} = \text{second invariant of } \dot{\gamma} \]
Introduction
Stability analysis
Newtonian fluid
non-Newtonian fluids

Stress-dependent viscosity

some examples:

[Graph showing different types of viscosity behavior: Newtonian, Shear-thinning, Shear-thickening, Bingham plastic]
Stability analysis

Newtonian fluid

non-Newtonian fluids

Stress-dependent viscosity

some examples:

- gel
Introduction
Stability analysis
Newtonian fluid
non-Newtonian fluids

Stress-dependent viscosity

some examples:
- gel
- oil paint

![Graph showing stress vs shear rate for different fluid types: Bingham plastic, Shear-thickening, Shear-thinning, Newtonian.](image)
Stress-dependent viscosity

some examples:
- gel
- oil paint
- blood
Stress-dependent viscosity

some examples:

- gel
- oil paint
- blood
- mayonnaise
Stress-dependent viscosity

some examples:
- gel
- oil paint
- blood
- mayonnaise
- magma
Stress-dependent viscosity

some examples:
- gel
- oil paint
- blood
- mayonnaise
- magma
- egg white
Stress-dependent viscosity

some examples:
- gel
- oil paint
- blood
- mayonnaise
- magma
- egg white
- custard
Introduction
Stability analysis
Newtonian fluid
non-Newtonian fluids

Stress-dependent viscosity

some examples:
- gel
- oil paint
- blood
- mayonnaise
- magma
- egg white
- custard
- “silly putty”
Carreau law

For shear thinning fluids, we require a model for the viscosity function.

\[
\mu = \hat{\mu}_\infty \hat{\mu}_0 + \left[1 - \frac{\hat{\mu}_\infty \hat{\mu}_0}{1 + \left(\frac{\lambda \dot{\gamma}}{n}\right)^2 \left(\frac{n-1}{2}\right)}\right]
\]
For shear thinning fluids, we require a model for the viscosity function.

Carreau law ($n = 1$ or $\lambda = 0$ is the Newtonian case):

$$\mu = \frac{\mu_\infty}{\mu_0} + \left[1 - \frac{\mu_\infty}{\mu_0}\right] \left[1 + (\lambda \dot{\gamma})^2\right]^{(n-1)/2}$$

(1)
Stability Analysis

Introduction
Stability analysis
Newtonian fluid
non-Newtonian fluids

General momentum equation for incompressible fluid is

\[
\frac{\partial}{\partial t} \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} = -\nabla p + \frac{1}{\text{Re}} \nabla \cdot \mathbf{\tau}
\]

\[
\mu = \text{const}
\]

for Newtonian fluids, reducing above to the (non-dimensional, unforced) Navier-Stokes equation:

\[
\frac{\partial}{\partial t} \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} = -\nabla p + \frac{1}{\text{Re}} \Delta \mathbf{u},
\]

where the Reynolds number is given by

\[
\text{Re} = \frac{\rho L V}{\mu_0}
\]

\(L\) = length scale,
\(V\) = velocity scale
\(\rho\) = fluid density (assumed constant due to incompressibility)
Stability Analysis

- **General momentum equation** for incompressible fluid is

\[
\left(\frac{\partial}{\partial t} + \mathbf{u} \cdot \nabla \right) \mathbf{u} = -\nabla p + \frac{1}{Re} \nabla \cdot \mathbf{\tau}
\]
Stability Analysis

- General momentum equation for incompressible fluid is

\[
\left(\frac{\partial}{\partial t} + \mathbf{u} \cdot \nabla \right) \mathbf{u} = -\nabla p + \frac{1}{Re} \nabla \cdot \mathbf{\tau}
\]

- \(\mu = \text{const} \) for Newtonian fluids, reducing above to the (non-dimensional, unforced) Navier-Stokes equation:

\[
\left(\frac{\partial}{\partial t} + \mathbf{u} \cdot \nabla \right) \mathbf{u} = -\nabla p + \frac{1}{Re} \Delta \mathbf{u},
\]

where the Reynolds number is given by

\[
Re = \rho LV / \mu_0.
\]

\(L = \) length scale, \(V = \) velocity scale
\(\rho = \) fluid density (assumed constant due to incompressibility)
Base solution (parallel shear flows):

\[U = U(y)e_x, \quad -1 \leq y \leq 1 \]

with no slip boundary conditions.
Base solution (parallel shear flows):

\[
\mathbf{U} = U(y) \mathbf{e}_x, \quad -1 \leq y \leq 1
\]

with no slip boundary conditions.

This reduces the momentum equations to the following:
Newtonian

\[
Re \frac{\partial p}{\partial x} = \frac{\partial^2 U}{\partial^2 y}
\]

non-Newtonian

\[
Re \frac{\partial p}{\partial x} = \frac{\partial}{\partial y} \left(\mu(\dot{\gamma}) \frac{\partial U}{\partial y} \right)
\]
Stability analysis

Newtonian fluid

\[Re \frac{\partial p}{\partial x} = \frac{\partial^2 U}{\partial^2 y} \]

non-Newtonian fluids

\[Re \frac{\partial p}{\partial x} = \frac{\partial}{\partial y} \left(\mu(\dot{\gamma}) \frac{\partial U}{\partial y} \right) \]

- We solve for \(U \). The plots of the base solutions are as follows:
We perturb the base flow by letting:

\[u(x, y, z, t) = U + \tilde{u}(x, y, z, t) \]

\[p = p_0 + \tilde{p}. \]
We perturb the base flow by letting:

\[u(x, y, z, t) = U + \tilde{u}(x, y, z, t) \]

\[p = p_0 + \tilde{p}. \]

Sub this new \(u \) in to momentum equation, assume \(\tilde{u} \) small and linearise.
We perturb the base flow by letting:

\[u(x, y, z, t) = U + \tilde{u}(x, y, z, t) \]
\[p = p_0 + \tilde{p}. \]

Sub this new \(u \) in to momentum equation, assume \(\tilde{u} \) small and linearise.

Plane geometry so consider a Fourier expansion of the disturbance:

\[\tilde{u}(x, y, z, t) = \hat{u}(y) \ e^{i(\alpha x + \beta z - \omega t)}. \]
We perturb the base flow by letting:

\[u(x, y, z, t) = U + \tilde{u}(x, y, z, t) \]

\[p = p_0 + \tilde{p}. \]

Sub this new \(u \) in to momentum equation, assume \(\tilde{u} \) small and linearise.

Plane geometry so consider a Fourier expansion of the disturbance:

\[\tilde{u}(x, y, z, t) = \hat{u}(y) e^{i(\alpha x + \beta z - \omega t)}. \]

Temporal analysis: spatial wave numbers real, but \(\omega = \omega_r + i\omega_i. \)
We perturb the base flow by letting:

\[u(x, y, z, t) = U + \tilde{u}(x, y, z, t) \]
\[p = p_0 + \tilde{p}. \]

Sub this new \(u \) in to momentum equation, assume \(\tilde{u} \) small and linearise.

Plane geometry so consider a Fourier expansion of the disturbance:

\[\tilde{u}(x, y, z, t) = \hat{u}(y) e^{i(\alpha x + \beta z - \omega t)}. \]

Temporal analysis: spatial wave numbers real, but
\[\omega = \omega_r + i\omega_i. \]

Unstable is when \(\omega_i > 0 \), stable otherwise.
We perturb the base flow by letting:

\[u(x, y, z, t) = U + \tilde{u}(x, y, z, t) \]

\[p = p_0 + \tilde{p}. \]

Sub this new \(u \) in to momentum equation, assume \(\tilde{u} \) small and linearise.

Plane geometry so consider a Fourier expansion of the disturbance:

\[\tilde{u}(x, y, z, t) = \hat{u}(y) e^{i(\alpha x + \beta z - \omega t)}. \]

Temporal analysis: spatial wave numbers real, but \(\omega = \omega_r + i\omega_i. \)

Unstable is when \(\omega_i > 0 \), stable otherwise.

Substitute into linearised momentum equation, eliminate \(\tilde{p} \), tidy up and get...
Orr-Sommerfeld and Squire equation

\[
\begin{pmatrix}
\mathcal{L}_{OS} & 0 \\
\beta(DU) & \mathcal{L}_{SQ}
\end{pmatrix}
\begin{pmatrix}
\hat{v} \\
\hat{\eta}
\end{pmatrix}
= \omega
\begin{pmatrix}
D^2 - k^2 & 0 \\
0 & 1
\end{pmatrix}
\begin{pmatrix}
\hat{v} \\
\hat{\eta}
\end{pmatrix}
\]

\[
\mathcal{L}_{OS} = \alpha U(D^2 - k^2) - \alpha (D^2 U) - \frac{1}{iRe}(D^2 - k^2)^2
\]

\[
\mathcal{L}_{SQ} = \alpha U - \frac{1}{iRe}(D^2 - k^2)
\]

\[
k^2 = \alpha^2 + \beta^2,
\]

\[
D = \frac{d}{dy}
\]

\[
\eta = \frac{\partial u}{\partial z} - \frac{\partial w}{\partial x}.
\]
Orr-Sommerfeld and Squire equation

\[
\begin{pmatrix}
\mathcal{L}_{OS} & 0 \\
\beta(DU) & \mathcal{L}_{SQ}
\end{pmatrix}
\begin{pmatrix}
\hat{\nu} \\
\hat{\eta}
\end{pmatrix}
= \omega
\begin{pmatrix}
D^2 - k^2 & 0 \\
0 & 1
\end{pmatrix}
\begin{pmatrix}
\hat{\nu} \\
\hat{\eta}
\end{pmatrix}
\]

\[
\mathcal{L}_{OS} = \alpha U(D^2 - k^2) - \alpha(D^2 U) - \frac{1}{i\text{Re}}(D^2 - k^2)\]

\[
\mathcal{L}_{SQ} = \alpha U - \frac{1}{i\text{Re}}(D^2 - k^2)
\]

\[
k^2 = \alpha^2 + \beta^2, \quad D = \frac{d}{dy}
\]

\[
\eta = \frac{\partial u}{\partial z} - \frac{\partial w}{\partial x}.
\]

Along with boundary conditions \(\hat{\nu} = D\hat{\nu} = 0\), this is a \textit{generalised eigenvalue problem} with eigenvalue \(\omega\).
Results

- Eigenvalue spectrum for Poiseuille flow, $U(y) = 1 - y^2$.

$\alpha = 1$, $\beta = 0$, and $Re = 5772$. Done using Chebyshev spectral collocation method in MATLAB.

![Graph showing eigenvalue spectrum](Image)
Results

- Eigenvalue spectrum for Poiseuille flow,
 \[U(y) = 1 - y^2. \]
- We used \(\alpha = 1, \beta = 0, \) and \(Re = 5772. \)
Results

- Eigenvalue spectrum for Poiseuille flow, \(U(y) = 1 - y^2 \).
- We used \(\alpha = 1, \beta = 0 \), and \(Re = 5772 \).
- Done using Chebyshev spectral collocation method in MATLAB.
Results

- Eigenvalue spectrum for Poiseuille flow, \(U(y) = 1 - y^2 \).
- We used \(\alpha = 1 \), \(\beta = 0 \), and \(Re = 5772 \).
- Done using Chebyshev spectral collocation method in MATLAB.
- Red line is the line of marginal stability, \(\omega_i = 0 \).
non-Newtonian fluids

\begin{align*}
\begin{pmatrix}
\mathcal{L} & \mathcal{E}_1 \\
\mathcal{E}_2 & S
\end{pmatrix}
\begin{pmatrix}
\hat{v} \\
\hat{\eta}
\end{pmatrix}
= \omega
\begin{pmatrix}
D^2 - k^2 & 0 \\
0 & 1
\end{pmatrix}
\begin{pmatrix}
\hat{v} \\
\hat{\eta}
\end{pmatrix},
\end{align*}

\mathcal{L} = \alpha U \Delta - \alpha (D^2 U)
- \frac{1}{iRe} \left[\mu \Delta^2 + 2D \mu D^3 + D^2 \mu D^2 - 2k^2 D \mu D + k^2 D^2 \mu \right]
- \frac{\alpha^2}{iRe k^2} (D^2 + k^2) [\mu_t - \mu] (D^2 + k^2)

\mathcal{E}_1 = \frac{\alpha \beta}{iRe k^2} (D^2 + k^2) [\mu_t - \mu] D

\mathcal{E}_2 = \beta (DU) + \frac{\alpha \beta}{iRe k^2} D [\mu_t - \mu] (D^2 + k^2)

S = \alpha U - \frac{1}{iRe} \left[\mu \Delta + D \mu D \right] + \frac{1}{iRe k^2} \beta^2 D [\mu_t - \mu] D
We take the base profile before as data points and work out the corresponding values of μ, $D\mu$, μ_t etc.
The work to be done

- We take the base profile before as data points and work out the corresponding values of μ, $D\mu$, μ_t etc.
- Code it into MATLAB and compute eigenvalues.
The work to be done

- We take the base profile before as data points and work out the corresponding values of μ, $D\mu$, μ_t etc.
- Code it into MATLAB and compute eigenvalues.
- Nouar et al. (2007) reported that shear thinning viscosity stabilises the flow.
We take the base profile before as data points and work out the corresponding values of μ, $D\mu$, μ_t etc.

Code it into MATLAB and compute eigenvalues.

Nouar et al. (2007) reported that shear thinning viscosity stabilises the flow.

NOTE: All the above is a linear theory.
The work to be done

- We take the base profile before as data points and work out the corresponding values of μ, $D\mu$, μ_t etc.
- Code it into MATLAB and compute eigenvalues.
- Nouar et al. (2007) reported that shear thinning viscosity stabilises the flow.
- NOTE: All the above is a linear theory.
We take the base profile before as data points and work out the corresponding values of μ, $D\mu$, μ_t etc.

Code it into MATLAB and compute eigenvalues.

Nouar *et al.* (2007) reported that shear thinning viscosity stabilises the flow.

NOTE: All the above is a *linear* theory.

Question time?