
Introduction
Stability analysis

Newtonian fluid
non-Newtonian fluids

Hydrodynamic Stability
of Newtonian and Non-Newtonian fluids

Project IV Presentation

Julian Mak



Introduction
Stability analysis

Newtonian fluid
non-Newtonian fluids

Non-Newtonian fluid?

What is a fluid?
Stress tensor - σ = −pI + τ

Rate of strain tensor - γ̇ = 1
2

[
∇u + (∇u)T ]

p = pressure, I = identity tensor, τ = extra stress tensor
∇ = gradient operator, u = velocity field

Newtonian fluid
τ = µγ̇, µ = constant

Non-Newtonian fluid
τ = µ(γ̇)γ̇, γ̇ = second invariant of γ̇
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Stress-dependent viscosity

some examples:

gel
oil paint
blood
mayonnaise
magma
egg white
custard
“silly putty”
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Carreau law

For shear thinning fluids, we require a model for the
viscosity function.

Carreau law (n = 1 or λ = 0 is the Newtonian case):

µ =
µ̂∞
µ̂0

+

[
1− µ̂∞

µ̂0

]
[1 + (λγ̇)2](n−1)/2 (1)
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Stability Analysis

General momentum equation for incompressible fluid is(
∂

∂t
+ u · ∇

)
u = −∇p +

1
Re
∇ · τ

µ = const for Newtonian fluids, reducing above to the
(non-dimensional, unforced) Navier-Stokes equation:(

∂

∂t
+ u · ∇

)
u = −∇p +

1
Re

∆u,

where the Reynolds number is given by

Re = ρLV/µ0.

L = length scale, V = velocity scale
ρ = fluid density (assumed constant due to
incompressibility)
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Base solution (parallel shear flows):

U = U(y)ex , −1 ≤ y ≤ 1

with no slip boundary conditions.

This reduces the momentum equations to the following:
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Newtonian

Re
∂p
∂x

=
∂2U
∂2y

non-Newtonian

Re
∂p
∂x

=
∂

∂y

(
µ(γ̇)

∂U
∂y

)

We solve for U. The plots of the base solutions are as
follows:
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We perturb the base flow by letting:

u(x , y , z, t) = U + ũ(x , y , z, t)
p = p0 + p̃.

Sub this new u in to momentum equation, assume ũ small
and linearise.
Plane geometry so consider a Fourier expansion of the
disturbance:

ũ(x , y , z, t) = û(y) ei(αx+βz−ωt).

Temporal analysis: spatial wave numbers real, but
ω = ωr + iωi .
Unstable is when ωi > 0, stable otherwise.
Substitute into linearised momentum equation, eliminate p̃,
tidy up and get...
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and linearise.
Plane geometry so consider a Fourier expansion of the
disturbance:
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p = p0 + p̃.

Sub this new u in to momentum equation, assume ũ small
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Orr-Sommerfeld and Squire equation

(
LOS 0
β(DU) LSQ

) (
v̂
η̂

)
= ω

(
D2 − k2 0

0 1

) (
v̂
η̂

)
LOS = αU(D2 − k2)− α(D2U)− 1

iRe
(D2 − k2)2

LSQ = αU − 1
iRe

(D2 − k2)

k2 = α2 + β2, D =
d
dy

η =
∂u
∂z
− ∂w
∂x

.

Along with boundary conditions v̂ = Dv̂ = 0, this is a
generalised eigenvalue problem with eigenvalue ω.
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Results

Eigenvalue spectrum for
Poiseuille flow,
U(y) = 1− y2.

We used α = 1, β = 0,
and Re = 5772.
Done using Chebyshev
spectral collocation
method in MATLAB.
Red line is the line of
marginal stability,
ωi = 0.
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non-Newtonian fluids

(
L E1
E2 S

) (
v̂
η̂

)
= ω

(
D2 − k2 0

0 1

) (
v̂
η̂

)
,

L = αU∆− α(D2U)

− 1
iRe

[µ∆2 + 2DµD3 + D2µD2 − 2k2DµD + k2D2µ]

− α2

iRe k2 (D2 + k2)[(µt − µ)(D2 + k2)]

E1 =
αβ

iRe k2 (D2 + k2)[(µt − µ)D]

E2 = β(DU) +
αβ

iRe k2 D[(µt − µ)(D2 + k2)]

S = αU − 1
iRe

[µ∆ + DµD] +
1

iRe
β2

k2 D[(µt − µ)D]



Introduction
Stability analysis

Newtonian fluid
non-Newtonian fluids

non-Newtonian fluids

(
L E1
E2 S

) (
v̂
η̂

)
= ω

(
D2 − k2 0

0 1

) (
v̂
η̂

)
,

L = αU∆− α(D2U)

− 1
iRe

[µ∆2 + 2DµD3 + D2µD2 − 2k2DµD + k2D2µ]

− α2

iRe k2 (D2 + k2)[(µt − µ)(D2 + k2)]

E1 =
αβ

iRe k2 (D2 + k2)[(µt − µ)D]

E2 = β(DU) +
αβ

iRe k2 D[(µt − µ)(D2 + k2)]

S = αU − 1
iRe

[µ∆ + DµD] +
1

iRe
β2

k2 D[(µt − µ)D]



Introduction
Stability analysis

Newtonian fluid
non-Newtonian fluids

The work to be done

We take the base profile before as data points and work
out the corresponding values of µ, Dµ, µt etc.

Code it into MATLAB and compute eigenvalues.
Nouar et al. (2007) reported that shear thinning viscosity
stabilises the flow.
NOTE: All the above is a linear theory.

Question time?
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