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Geometric Representation of an Algebraic Number Field
Definition: An element α ∈ C is called an algebraic number if it satisfies f (α) = 0 for some
f (x) ∈ Q[x]. A field K with C ⊃ K ⊃ Q and [K : Q] < ∞ is called an algebraic number field.
Typically, an algebraic number field is of the form:

K = Q(θ) =
Q[x]
pθ(x)

where pθ(x) is the minimum polynomial for θ.
It is possible to geometrically represent an algebraic number field in a logarithmic sub-
space of Rr1+r2 , where r1 and r2 are, respectively, the number of real and pairs of complex
embeddings of the number field (when the number field is given using a minimum poly-
nomial these relate to the number of real and pairs of complex roots). For α ∈ K, we
construct co-ordinates:

l(α) = (l1(α), . . . , lr1+r2 (α))

where:

• li(α) =
{

ln|σi(α)| if i = 1, . . . , r1
ln|σi(α)|2 if i = r1 + 1, . . . , r1 + r2

• σi(α) is a real embedding of alpha for i = 1, . . . , r1 and a complex embedding for
i = r1 + 1, . . . , r1 + r2.

The geometric representation only really becomes useful however, when we look at the
representation of the units. For this we first turn to a famous theorem by Johann Dirichlet:

Dirichlet’s Unit Theorem:
For an algebraic number field K of degree n = r1 + 2r2, there exists units ε1, . . . , εr with
r = r1 + r2 − 1 such that every unit u ∈ OK has a unique representation in the form:

u = ζεa1
1 · · · ε

ar
r

where a1, . . . , ar ∈ Z and ζ is some root of unity contained in OK , the ring of integers.

Proposition: For a unit u = ζεa1
1 · · · ε

ar
r ∈ OK , with a1, . . . , ar ∈ Z as in Dirichlet’s Theo-

rem. Then:
l(u) = a1l(ε1) + . . . + ar l(εr)

i.e. the units map to a lattice of dimension r = r1 + r2 − 1 under the representation. This
lattice will have fundamental parallelepipeds of volume v, which define the Dirichlet Reg-
ulator, R:

R =
v√

r1 + r2

This important invariant gives us an idea of the ’size of the units’ of the algebraic number
field.

The Analytic Class Number Formula
This can be written in several forms, the one easiest to understand is the following:

lim
s→0

ζK(s)
s(r1+r2−1)

= − hKR
wK

where:

• ζK(s) = ∑
a

1
N(a)s is the Dedekind Zeta function for the field K, where p runs over

all the ideals in OK and N(a) is the ideal norm of a. See [1] for a good description.
A result by Dirichlet shows it has a zero at s = 0 of order r1 + r2 − 1, meaning the
left-hand side of the above equation is a finite real value.

• hK is the class number of K, an important invariant which measures to what extent
unique factorisation fails in K.

• wK is the number of roots of unity contained in K.

• R is the Dirichlet Regulator previously described.

The Dirichlet Class Number formula provides quite an astonishing link between very im-
portant invariants of an algebraic number field and the Dedekind Zeta function.

A specific example
For the algebraic number field, K = Q(θ) with

θ6 + θ5 + θ4 + θ3 + θ2 + θ + 1 = 0

we find that, since r1 = 0 and r2 = 3, that we get a 2-dimensional lattice. The units
u1 = 1 + θ and u2 = 1 + θ + θ2 can be used as a system of fundamental units of this
field.
We get:

l(u1) = [1.177725212, 0.4414486199,−1.619173833]
l(u2) = [1.619173832,−1.177725212,−0.4414486206]

Our specific example, K = Q(θ) then gives the following 2-dimensional lattice in R3,
with units represented by lattice points:

Verification of the Analytic Class Number Formula
We can now verify the Analytic Class Number Formula for the specific example above.
We also have that hK = 1, and the roots of unity in the field are generated by −1 and
the primitive seventh root of unity, giving wK = 14. Using Maple we find that the
volume of a fundamental parallelepiped is v = 3.64056828, giving R = 2.101818729.
So we get

lim
s→0

ζQ(θ)(s)
s2 = − hKR

wK
= −2.101818729

14
= −0.1501299092

Using GP/PARI we can calculate Dedekind Zeta values directly, by making s very
small we can find an evaluation very near to the limit at s = 0. For s = 10−21 we get

ζK(s)
s2 = −0.1501299092,

which corroborates our result to 10 decimal places.

Going higher with Polylogarithms

We define the Polylogarithm Lim(z) by:

Lim(z) =
∞

∑
n=1

zn

nm z ∈ C, |z| < 1, m ∈N

We also note that the monologarithm, Li1(z) equals −ln(1− z) with z ∈ C, |z| < 1.
Polylogarithms have been found to appear in areas of mathematics as varied as as
Feynman integrals, volumes of hyperbolic manifolds and algebraic geometry. Don
Zagier remarked:

”The dilogarithm is perhaps the only mathematical function with a sense of humor”

—in relation to the variety and oddness of the appearance of the dilogarithm.

So where do Polylogarithms fit in?
You will notice that the Geometric representation we used was a logarithmic represen-
tation. From this, we managed to reach an evaluation of the Dedekind Zeta function.
There is a strong relation between ζK(s) and ζK(1 − s) (as with the Riemann Zeta
Function, a specific Dedekind Zeta Function), so we can view our calculation in the
Analytic Class Number Formula as an evaluation of the Dedekind Zeta Function at
the value s = 1.

Motivational idea: If we can use the natural logarithm to calculate the Dedekind Zeta
Function at s = 1, can we use the dilogarithm to calculate evaluations at s = 2?

Through the work of Don Zagier, Spencer Bloch and others, we can answer yes to
this question. Where before we used the logarithm of units of the field, it is possible
to take a ’higher logarithm’ of ’higher units’ to obtain ’higher regulators’ and ’higher
Dedekind Zeta values’. Below is a specific evaluation of a Dedekind zeta value at
s = −1 (which is, in a sense, at s = 2), using the dilogarithm, for a simple quadratic
extension of Q.

A specific example

An example, taken from [3], for the algebraic number field K = Q(
√
−7):

lim
s→−1

6π · ζK(s)
s

= 2D

(
1 +
√
−7

2

)
+ D

(
−1 +

√
−7

4

)

The function D(x) is the Bloch-Wigner function, a modification of the dilogarithm:

D(x) = =(Li2(x)) + arg(1− x)ln|x| x ∈ C, x 6∈ {0, 1}

It is possible to see the relation between this evaluation and the analytic class number
formula, here we obtain a ’higher regulator’ by taking a modified dilogarithm of the
’higher unit’:

2

[
1 +
√
−7

2

]
+

[
−1 +

√
−7

2

]

Even higher?
There are also results concerning the calculation of the Dedekind zeta value at s = 3
using the trilogarithm. There is much research to be done on taking this fascinating
idea to higher and higher values.
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