Polylogarithms

and The Geometric Representation of Algebraic Number Fields

John Rhodes

Durham University

Overview

- Geometric Representation of an Algebraic Number Field
- Specific Example
- The Analytic Class Number Formula
- What is a Polylogarithm?
- Going Higher

Geometric Representation of an Algebraic Number Field

- An element $\alpha \in \mathbb{C}$ is called an algebraic number if it satisfies $f(\alpha)=0$ for some $f(x) \in \mathbb{Q}[x]$
- A field K with $\mathbb{C} \supset K \supset \mathbb{Q}$ and $[K: \mathbb{Q}]<\infty$ is called an algebraic number field.
- Typically an algebraic number field is of the form:

$$
K=\mathbb{Q}(\theta)=\frac{\mathbb{Q}[x]}{p_{\theta}(x)}
$$

Where $p_{\theta}(x)$ is the minimum polynomial for θ.

- Example: $\mathbb{Q}(\theta)$ where $\theta^{3}=2$

Geometric Representation of an Algebraic Number Field

- An element $\alpha \in \mathbb{C}$ is called an algebraic number if it satisfies $f(\alpha)=0$ for some $f(x) \in \mathbb{Q}[x]$
- A field K with $\mathbb{C} \supset K \supset \mathbb{Q}$ and $[K: \mathbb{Q}]<\infty$ is called an algebraic number field.
- Typically an algebraic number field is of the form:

$$
K=\mathbb{Q}(\theta)=\frac{\mathbb{Q}[x]}{p_{\theta}(x)}
$$

Where $p_{\theta}(x)$ is the minimum polynomial for θ.

- Example: $\mathbb{Q}(\theta)$ where $\theta^{3}=2$
- Idea: Can we represent an algebraic number field geometrically, say, in \mathbb{R}^{n} ?

A Specific Example

Introduce the algebraic number field $\mathbb{Q}(\theta)$ with θ a root of:

$$
\theta^{7}=1
$$

A Specific Example

Introduce the algebraic number field $\mathbb{Q}(\theta)$ with θ a root of:

$$
\theta^{6}+\theta^{5}+\theta^{4}+\theta^{3}+\theta^{2}+\theta+1=0
$$

A Specific Example

Introduce the algebraic number field $\mathbb{Q}(\theta)$ with θ a root of:

$$
\theta^{6}+\theta^{5}+\theta^{4}+\theta^{3}+\theta^{2}+\theta+1=0
$$

We shall denote the primitive $7^{\text {th }}$ root of unity $\zeta_{7} \in \mathbb{C}$
Properties:

- $r_{1}=0, r_{2}=3,[\mathbb{Q}(\theta): \mathbb{Q}]=6$
- Six embeddings into \mathbb{C} :

$$
\sigma_{1}, \overline{\sigma_{1}}, \sigma_{2}, \overline{\sigma_{2}}, \sigma_{3}, \overline{\sigma_{3}}: \mathbb{Q}(\theta) \hookrightarrow \mathbb{C}
$$

- $\sigma_{1}(\theta)=\zeta_{7}, \sigma_{2}(\theta)=\zeta_{7}^{2}, \sigma_{3}(\theta)=\zeta_{7}^{3}$

Plot of Seventh Roots of Unity

The Logarithmic Space

For $\alpha \in \mathbb{Q}(\theta)$, define a vector $l(\alpha) \in \mathbb{R}^{3}$ as:

$$
l(\alpha):=\left(\ln \left|\left(\sigma_{1}(\alpha)\right)\right|^{2}, \ln \left|\left(\sigma_{2}(\alpha)\right)\right|^{2}, \ln \left|\left(\sigma_{3}(\alpha)\right)\right|^{2}\right)
$$

The Logarithmic Space

For $\alpha \in \mathbb{Q}(\theta)$, define a vector $l(\alpha) \in \mathbb{R}^{3}$ as:

$$
l(\alpha):=\left(\ln \left|\left(\sigma_{1}(\alpha)\right)\right|^{2}, \ln \left|\left(\sigma_{2}(\alpha)\right)\right|^{2}, \ln \left|\left(\sigma_{3}(\alpha)\right)\right|^{2}\right)
$$

Properties:

- $l(\alpha \beta)=l(\alpha)+l(\beta)$
- $l\left(\alpha^{a}\right)=a l(\alpha)$
- $\sum_{i=1}^{r_{1}+r_{2}} l_{i}(\alpha)=\ln |N(\alpha)|$

Representation of Units

Obvious units in $\mathbb{Q}(\theta)$:

$$
\pm 1, \pm \zeta_{7}, \pm \zeta_{7}^{2}, \pm \zeta_{7}^{3}, \pm \zeta_{7}^{4}, \pm \zeta_{7}^{5}, \pm \zeta_{7}^{6}
$$

Other units:

$$
u_{1}=1+\theta \quad \text { and } \quad u_{2}=1+\theta+\theta^{2}
$$

For a generic unit $u= \pm \zeta_{7}^{a} u_{1}^{b} u_{2}^{c}$ with $a, b, c \in \mathbb{Z}$:

Representation of Units

Obvious units in $\mathbb{Q}(\theta)$:

$$
\pm 1, \pm \zeta_{7}, \pm \zeta_{7}^{2}, \pm \zeta_{7}^{3}, \pm \zeta_{7}^{4}, \pm \zeta_{7}^{5}, \pm \zeta_{7}^{6}
$$

Other units:

$$
u_{1}=1+\theta \quad \text { and } \quad u_{2}=1+\theta+\theta^{2}
$$

For a generic unit $u= \pm \zeta_{7}^{a} u_{1}^{b} u_{2}^{c}$ with $a, b, c \in \mathbb{Z}$:

$$
l(u)=b . l\left(u_{1}\right)+c . l\left(u_{2}\right)
$$

The units are the points of a lattice of dimension 2.

The Dirichlet Regulator

The Dirichlet Regulator, R_{K} :

$$
R_{K}=\frac{\operatorname{vol}(P)}{\sqrt{r_{1}+r_{2}}}
$$

The Analytic Class Number Formula

Theorem:

$$
\lim _{s \rightarrow 0} \frac{\zeta_{K}(s)}{s^{\left(r_{1}+r_{2}-1\right)}}=-\frac{h_{K} R_{K}}{w_{K}}
$$

where:

- $\zeta_{K}(s)=\sum_{\mathfrak{a}} \frac{1}{N(\mathfrak{a})^{s}}$ is the Dedekind Zeta function for the
field K, where \mathfrak{a} runs over all the ideals in \mathcal{O}_{K}, the ring of integers.
- h_{K} is the class number of K.
- w_{K} is the number of roots of unity contained in K.
- R_{K} is the Dirichlet Regulator previously described.

What is a Polylogarithm?

- The natural logarithm $\ln (x)$
- $-\ln (1-z)=\sum_{n=1}^{\infty} \frac{z^{n}}{n} \quad z \in \mathbb{C},|z|<1$

What is a Polylogarithm?

- The natural logarithm $\ln (x)$
- $-\ln (1-z)=\sum_{n=1}^{\infty} \frac{z^{n}}{n} \quad z \in \mathbb{C},|z|<1$
- Definition of a Polylogarithm:

$$
\operatorname{Lim}(z)=\sum_{n=1}^{\infty} \frac{z^{n}}{n^{m}} \quad z \in \mathbb{C},|z|<1, m \in \mathbb{N}
$$

Going Higher

- $\zeta_{K}(s) \sim \zeta_{K}(1-s)$
- Zagier Conjecture says that $\zeta_{K}(2)$ can be expressed in terms of $L_{2}(x)$
- Higher Regulators
- Higher Class Numbers
- Higher Dedekind Zeta Values

Questions?

