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Analysis

Optimal Control (and notation).

Optimal control problems model situations where a stochastic process x(s) ∈ Rn

is steered by the choice of a function α(·), called a control, that takes values in a
compact metric space Λ.

The dynamics of x(s) are specified by a stochastic differential equation:

dx(s) = b
(
x(s), s, α(x(s), s)

)
ds+ σ

(
x(s), s, α(x(s), s)

)
dW (s) for s ∈ (t, T ], (1a)

x(t) = x; (1b)

where W (s) ∈ Rd is a Brownian motion, x ∈ U for U ∈ Rn open and bounded, T > 0 is a terminal

time, t ∈ [0, T ) is a start time, b : Rn × R× Λ 7→ Rn and σ : Rn × R× Λ 7→ Rn×d.

The objective is to minimise the cost functional, defined as

J
(
x, t, α(·)

)
= Ex,t

[∫ τ

t

f
(
x(s), s, α(x(s), s)

)
ds+ g

(
x(τ), τ

)]
; (2)

where E means expectation, τ is the time of first exit of x(·) from O = U × (0, T ], f : Rn×R×Λ 7→ R
is the running cost and g : Rn × R 7→ R is the exit cost.

To study optimal control problems, the value function is introduced as

u (x, t) = inf
α(·)∈A

J
(
x, t, α(·)

)
; (3)

where A is a problem-given subset of stochastic processes that take values in Λ.

A control α∗(·) is called optimal for start data (x, t) ∈ O if J (x, t, α∗(·)) = u(x, t).
The optimal control problem is to find such an optimal control α∗(·).

Solving the Optimal Control Problem. Under smoothness assumptions, the
value function u satisfies the HJB equation (5) and that optimal controls maximise
the term −ut(x, t) + Lαu(x, t)− f(x, t, α). Further details are found in [3].

The HJB equation is used twice in the process of solving the optimal control prob-
lem. First it is used as a partial differential equation for u. Having found u, it is then
used to find an optimal control α∗ by finding, for each (x, t) ∈ Ō, some α∗(x, t) ∈ Λ a
maximiser of −ut(x, t) + Lαu(x, t)− f(x, t, α).

Viscosity Solutions.
Definition. ([2]) A function u is a viscosity solution of the HJB equation if it is

continuous on O, satisfies the boundary conditions, and satisfies the following prop-
erty. For ϕ ∈ C2 (O), if u− ϕ has a maximum, respectively a minimum, at (x, t) ∈ O
then

−ϕt(x, t) + max
α∈Λ

[Lαϕ(x, t)− f(x, t, α)] ≤ 0; (4)

respectively greater than or equal to 0. A viscosity solution is not necessarily a
differentiable function that satisfies the equation in the usual pointwise meaning. This
is why it is said that a viscosity solution is a form of generalised solution to a PDE.

Challenge. The two plots A and B below display two functions that satisfy almost everywhere
the equation:

|ux| − 1 = 0 on (−1, 1); u = 0 at − 1 and 1.

With the definition of the previous paragraph,
A

x−1 1

1
B

x−1 1

1

can you find which one is the viscosity solution

of this equation?

The answer is at the bottom left of this poster.

Relevance to HJB. Under reasonable assumptions, the viscosity solution of a
HJB equation is unique. Often, for HJB equations originating from optimal control
problems, the value function u(x, t) of equation (3) is the unique viscosity solution,
even if u(x, t) is not smooth. This means that the notion of viscosity solution is the
one that is relevant for solving an optimal control problem. For more details, see [3].

Partial Differential Equations

Hamilton-Jacobi-Bellman (HJB) Equations.

With the notation of the paragraph on optimal control, the HJB equation is

−ut(x, t) + max
α∈Λ

[Lαu(x, t)− f (x, t, α)] = 0 on O, (5)

with the linear elliptic operators Lα defined by

Lαu(x, t) = −
n∑
i,j

aij(x, t, α)uxixj(x, t)−
n∑
i

bi(x, t, α)uxi(x, t);

and a ∈ Rn×n defined by a = 1/2σσT .

It is a backward parabolic partial differential equation, often considered with ter-
minal condition u(x, T ) = g(x, T ), x ∈ U and lateral conditions u(x, t) = g(x, t),
(x, t) ∈ ∂U × [0, T ), with g given by (2).

Theorem ([4]). Under some regularity assumptions, if Lα is uniformly elliptic for
all (x, t, α) ∈ Rn×R×Λ, i.e.

∑n
i,j=1 aij(x, t, α)ξiξj ≥ c‖ξ‖2

2, for all ξ ∈ Rn, then there

exists a unique solution in C2 (O) ∩ C
(
Ō
)

to the HJB equation (5).

However the cases where a is not uniformly elliptic are important; they include for
instance all deterministic optimal control problems, i.e. where σ ≡ 0. For these cases,
a twice differentiable solution cannot generally be expected, and the appropriate notion
of solution is that of a viscosity solution.
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HJB equations arise from the

study of optimal control problems.

Discretised HJB equations can

be often be solved by a super-

linearly convergent algorithm.

The Barles Souganidis argument shows

convergence for some numerical methods.

A viscosity solution is often the relevant

notion of solution for HJB equations.

Mean Field Games involve a system of a HJB

equation and a Fokker-Planck equation...

... to model the behaviour of a

large number of competing players.

Mean Field Games.
Mean field games were introduced by P.-L. Lions and J.-M. Lasry in 2006 ([5])

to model a large system of “players” each undergoing an individual optimal control
problem. The density of players at position x at time t is m(x, t).

The position of each player evolves via the stochastic differential equation (1) with
σ :=

√
2ε, ε > 0 constant, and the players aim to optimise their cost functionals

J(x, α) = E
∫ T

0 f (x(s), α) + V [m(·, s)] (x(s))ds, where V [m(·, s)] (x) represents the
costs of the interactions between players.

With the ideas from the section on optimal control, the players determine their
strategies through an optimal control α∗(x, t) determined by the HJB equation

−ut(x, t)− ε∆u(x, t) + max
α∈Λ

[−b(x, α) · ∇u(x, t)− f(x, α)] = V [m(·, t)] (x); (6a)

and the distribution of players evolves through the Fokker-Planck equation

mt(x, t)− ε∆m(x, t) +∇ ·
(
b
(
x, α∗(x, t)

)
m(x, t)

)
= 0. (6b)

Equations (6a) and (6b) constitute the mean field game equations, a nonlinearly
coupled system of parabolic equations evolving in opposite time directions.

Numerical Analysis

Solving Discretised HJB Equations.
Many numerical schemes for the HJB equation can be represented by a sequence

of equations of the form

Fh [uh] = max
α∈Λ

[Aα
huh − dα] = 0, uh ∈ RNh; (7)

where Nh is the number of degrees of freedom of the scheme, F : RNh 7→ RNh, Aα
h

is an Nh-by-Nh matrix and dα ∈ RNh. The maximum is understood here in the
component-wise sense: for x, y ∈ RNh, (max(x, y))i = max(xi, yi).

For each v ∈ RNh, there exists A(v) ∈ RNh×Nh and d(v) ∈ RNh such that F (v) =
A(v)v − d(v). In particular A(v) is composed as a combination of the rows of the
matrices Aα

h for which the maximum in (7) is attained.

Newton’s method can be effective at solving equations with differentiable functions.
However the function in (7) is not in general differentiable, because x 7→ |x| is a
particular case of the general discrete HJB equation.

However, it is possible to use a so-called semismooth Newton method, based on a
weaker notion of derivative. The end result of this analysis is the following theorem.

Theorem. ([6]) If Λ is compact and Aα
h, d

α depend continuously on α, under some
further assumptions, the semismooth Newton iterates defined by

A(vk) (vk+1 − vk) = Fh(vk), k ∈ N, v0 chosen,

will converge superlinearly to a solution uh provided the initial guess v0 is close enough
to uh.

Convergence of Numerical Methods to Viscosity
Solutions.

Because of the definition of viscosity solutions, classical convergence arguments,
such as those based on truncation errors, are not valid for showing convergence of
numerical methods to viscosity solutions.

An important strategy for proving convergence, from Barles and Souganidis, can be
used for monotone methods. To summarise this strategy informally, consider a finite
difference scheme, written abstractly as Fh [uh] (xi, tk) = 0 for all grid points (xi, tk).

Assume that Fh is monotone: it has the property that if u, v are functions and that
u− v has a maximum at a point (xi, tk) of the grid, then Fh [u] (xi, tk) ≥ Fh [v] (xi, tk).

Now suppose that for ϕ ∈ C2(O), limh→0 uh−ϕ has a maximum at a point (x, t) ∈ O.
Then it is possible to show that for h small, uh−ϕ has a maximum at a point (xi, tk)
of the grid that is near (x, t). Then by the monotonocity property,

0 = Fh [uh] (xi, tk) ≥ Fh [ϕ] (xi, tk). (8)

So by taking the limit as h→ 0, if the scheme is consistent,

−ϕt + max
α∈Λ

[Lαϕ(x, t)− f(x, t, α)] ≤ 0.

Thus limh→0 uh satisfies the first requirement of a viscosity solution, as given in equa-
tion (4). A similar argument shows that limh→0 uh satisfies the second requirement
and is thus a viscosity solution. So the approximations uh converge to the viscosity
solution of the equation. A specific example for which this argument applies is the
Kushner-Dupuis scheme; more details can be found in [1] and [3].

Answer:A
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